Skip to main content

2025 | OriginalPaper | Buchkapitel

3. Sensing Elements

verfasst von : Ebrahim Ghafar-Zadeh, Saghi Forouhi, Tayebeh Azadmousavi

Erschienen in: Advanced CMOS Biochips

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an overview of the sensing mechanisms and transducers utilized in various types of CMOS biosensors, which are critical for detecting and measuring biological signals and chemical reactions. It offers a comprehensive exploration of various sensing mechanisms central to CMOS microelectrode systems and related technologies, including voltammetric, impedimetric, capacitive, optical, magnetic, and temperature sensors. The chapter details the electrode-electrolyte system, CMOS microelectrode structures, and fabrication, and explores microelectrode arrays (MEAs) for neural applications. It also examines Biological/Chemical Field-Effect Transistors (Bio/ChemFETs), their physics, operational regions, and fabrication, followed by a discussion on optical and magnetic sensing mechanisms. Additionally, it covers Nuclear Magnetic Resonance (NMR) principles and various temperature sensing methods, providing a deep understanding of their roles in different sensing environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Harvey D (2010) Analytical chemistry 2.0. LibreTexts Harvey D (2010) Analytical chemistry 2.0. LibreTexts
2.
Zurück zum Zitat Hedayatipour A, Aslanzadeh S, McFarlane N (2019) CMOS based whole cell impedance sensing: challenges and future outlook. Biosens Bioelectron 143:111600CrossRef Hedayatipour A, Aslanzadeh S, McFarlane N (2019) CMOS based whole cell impedance sensing: challenges and future outlook. Biosens Bioelectron 143:111600CrossRef
3.
Zurück zum Zitat Manickam A (2012) Integrated impedance spectroscopy biosensors. The University of Texas at Austin Manickam A (2012) Integrated impedance spectroscopy biosensors. The University of Texas at Austin
4.
Zurück zum Zitat Bard AJ, Faulkner LR, White HS (2022) Electrochemical methods: fundamentals and applications. Wiley Bard AJ, Faulkner LR, White HS (2022) Electrochemical methods: fundamentals and applications. Wiley
5.
Zurück zum Zitat Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257CrossRef Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257CrossRef
6.
Zurück zum Zitat Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947CrossRef Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947CrossRef
7.
Zurück zum Zitat Liu Q, Wang P (2009) Cell-based biosensors: principles and applications. Artech House, Norwood, Massachusetts, United States Liu Q, Wang P (2009) Cell-based biosensors: principles and applications. Artech House, Norwood, Massachusetts, United States
9.
Zurück zum Zitat Lu MS-C, Chen Y-C, Huang P-C (2010) 5 × 5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Biosens Bioelectron 26(3):1093–1097CrossRef Lu MS-C, Chen Y-C, Huang P-C (2010) 5 × 5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Biosens Bioelectron 26(3):1093–1097CrossRef
11.
Zurück zum Zitat Ghafar-Zadeh E, Sawan M, Chodavarapu VP, Hosseini-Nia T (2010) Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans Biomed Circuits Syst 4(4):232–238CrossRef Ghafar-Zadeh E, Sawan M, Chodavarapu VP, Hosseini-Nia T (2010) Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans Biomed Circuits Syst 4(4):232–238CrossRef
12.
Zurück zum Zitat Cornila C et al (1995) Capacitive sensors in CMOS technology with polymer coating. Sensors Actuators B Chem 25(1–3):357–361CrossRef Cornila C et al (1995) Capacitive sensors in CMOS technology with polymer coating. Sensors Actuators B Chem 25(1–3):357–361CrossRef
13.
Zurück zum Zitat Hagleitner C, Lange D, Hierlemann A, Brand O, Baltes H (2002) CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J Solid State Circuits 37(12):1867–1878CrossRef Hagleitner C, Lange D, Hierlemann A, Brand O, Baltes H (2002) CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J Solid State Circuits 37(12):1867–1878CrossRef
14.
Zurück zum Zitat Hierlemann A, Weimar U, Baltes H (2002) Hand-held and palm-top chemical microsensor systems for gas analysis. In: Handbook of machine olfaction: electronic nose technology, pp 201–229CrossRef Hierlemann A, Weimar U, Baltes H (2002) Hand-held and palm-top chemical microsensor systems for gas analysis. In: Handbook of machine olfaction: electronic nose technology, pp 201–229CrossRef
15.
Zurück zum Zitat Kummer AM, Hierlemann A, Baltes H (2004) Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal Chem 76(9):2470–2477CrossRef Kummer AM, Hierlemann A, Baltes H (2004) Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal Chem 76(9):2470–2477CrossRef
16.
Zurück zum Zitat Hierlemann A (2005. Digest of technical papers. TRANSDUCERS’05. The 13th international conference on, 2005, vol. 2) Integrated chemical microsensor systems in CMOS-technology. In: Solid-state sensors, actuators and microsystems. IEEE, pp 1134–1137 Hierlemann A (2005. Digest of technical papers. TRANSDUCERS’05. The 13th international conference on, 2005, vol. 2) Integrated chemical microsensor systems in CMOS-technology. In: Solid-state sensors, actuators and microsystems. IEEE, pp 1134–1137
17.
Zurück zum Zitat Tashtoush A (2018) Nano-amplification strategy using charge based capacitance measurement for pathogenic bacteria detection, J Biotechnol Strateg Health Res, 2, 2, pp. 87–100 Tashtoush A (2018) Nano-amplification strategy using charge based capacitance measurement for pathogenic bacteria detection, J Biotechnol Strateg Health Res, 2, 2, pp. 87–100
18.
Zurück zum Zitat Hassibi A, Lee TH (2006) A programmable 0.18-μm CMOS electrochemical sensor microarray for biomolecular detection. IEEE Sensors J 6(6):1380–1388CrossRef Hassibi A, Lee TH (2006) A programmable 0.18-μm CMOS electrochemical sensor microarray for biomolecular detection. IEEE Sensors J 6(6):1380–1388CrossRef
19.
Zurück zum Zitat Prakash SB, Abshire P, Urdaneta M, Smela E (2005) A CMOS capacitance sensor for cell adhesion characterization. In: 2005 IEEE international symposium on circuits and systems. IEEE, pp 3495–3498 Prakash SB, Abshire P, Urdaneta M, Smela E (2005) A CMOS capacitance sensor for cell adhesion characterization. In: 2005 IEEE international symposium on circuits and systems. IEEE, pp 3495–3498
20.
Zurück zum Zitat Prakash SB, Abshire P (2007) On-chip capacitance sensing for cell monitoring applications. IEEE Sensors J 7(3):440–447CrossRef Prakash SB, Abshire P (2007) On-chip capacitance sensing for cell monitoring applications. IEEE Sensors J 7(3):440–447CrossRef
21.
Zurück zum Zitat Prakash SB, Abshire P (2005) A CMOS capacitance sensor that monitors cell viability. In: IEEE sensors, 2005. IEEE, p 4 Prakash SB, Abshire P (2005) A CMOS capacitance sensor that monitors cell viability. In: IEEE sensors, 2005. IEEE, p 4
24.
Zurück zum Zitat Ghafar-Zadeh E, Sawan M, Therriault D (2009) CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach. Analog Integr Circ Sig Process 59(1):1–12CrossRef Ghafar-Zadeh E, Sawan M, Therriault D (2009) CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach. Analog Integr Circ Sig Process 59(1):1–12CrossRef
25.
Zurück zum Zitat Nabovati G, Ghafar-Zadeh E, Mirzaei M, Ayala-Charca G, Awwad F, Sawan M (2015) A new fully differential CMOS capacitance to digital converter for lab-on-Chip applications. IEEE transactions on biomedical circuits and systems 9(3):353–361CrossRef Nabovati G, Ghafar-Zadeh E, Mirzaei M, Ayala-Charca G, Awwad F, Sawan M (2015) A new fully differential CMOS capacitance to digital converter for lab-on-Chip applications. IEEE transactions on biomedical circuits and systems 9(3):353–361CrossRef
26.
Zurück zum Zitat Moreno-Hagelsieb L et al (2007) Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens Bioelectron 22(9–10):2199–2207CrossRef Moreno-Hagelsieb L et al (2007) Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens Bioelectron 22(9–10):2199–2207CrossRef
27.
Zurück zum Zitat Nikkhoo N, Man C, Maxwell K, Gulak PG (2008) A 0.18 μm CMOS integrated sensor for the rapid identification of bacteria. In: Solid-state circuits conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International. IEEE, pp 336–617 Nikkhoo N, Man C, Maxwell K, Gulak PG (2008) A 0.18 μm CMOS integrated sensor for the rapid identification of bacteria. In: Solid-state circuits conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International. IEEE, pp 336–617
28.
Zurück zum Zitat Ghafar-Zadeh E, Sawan M (2010) CMOS capacitive sensors for lab-on-chip applications. Springer, New YorkCrossRef Ghafar-Zadeh E, Sawan M (2010) CMOS capacitive sensors for lab-on-chip applications. Springer, New YorkCrossRef
30.
Zurück zum Zitat Couniot N, Bol D, Poncelet O, Francis LA, Flandre D (2014) A capacitance-to-frequency converter with on-chip passivated microelectrodes for bacteria detection in saline buffers up to 575 MHz. IEEE Trans Circuits Syst II: Express Briefs 62(2):159–163 Couniot N, Bol D, Poncelet O, Francis LA, Flandre D (2014) A capacitance-to-frequency converter with on-chip passivated microelectrodes for bacteria detection in saline buffers up to 575 MHz. IEEE Trans Circuits Syst II: Express Briefs 62(2):159–163
31.
Zurück zum Zitat Nabovati G, Ghafar-Zadeh E, Letourneau A, Sawan M (2016) Towards high throughput cell growth screening: a new CMOS 8×8 biosensor Array for life science applications. IEEE Trans Biomed Circuits Syst Nabovati G, Ghafar-Zadeh E, Letourneau A, Sawan M (2016) Towards high throughput cell growth screening: a new CMOS 8×8 biosensor Array for life science applications. IEEE Trans Biomed Circuits Syst
32.
Zurück zum Zitat Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4(6):1564–1571CrossRef Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4(6):1564–1571CrossRef
33.
Zurück zum Zitat Chen X, Yan X, Khor KA, Tay BK (2007) Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosens Bioelectron 22(12):3256–3260CrossRef Chen X, Yan X, Khor KA, Tay BK (2007) Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosens Bioelectron 22(12):3256–3260CrossRef
34.
Zurück zum Zitat Zhang S, Yang W, Niu Y, Li Y, Zhang M, Sun C (2006) Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/nanoparticles. Anal Bioanal Chem 384(3):736–741CrossRef Zhang S, Yang W, Niu Y, Li Y, Zhang M, Sun C (2006) Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/nanoparticles. Anal Bioanal Chem 384(3):736–741CrossRef
35.
Zurück zum Zitat Nabovati G, Zhu YW, Sawan M (2015) Capacitive sensor arrays. In: Wiley encyclopedia of electrical and electronics engineering, pp 1–12 Nabovati G, Zhu YW, Sawan M (2015) Capacitive sensor arrays. In: Wiley encyclopedia of electrical and electronics engineering, pp 1–12
36.
Zurück zum Zitat Hofmann F et al (2002) Passive DNA sensor with gold electrodes fabricated in a CMOS backend process. In: Solid-state device research conference, 2002. Proceeding of the 32nd European. IEEE, pp 487–490CrossRef Hofmann F et al (2002) Passive DNA sensor with gold electrodes fabricated in a CMOS backend process. In: Solid-state device research conference, 2002. Proceeding of the 32nd European. IEEE, pp 487–490CrossRef
38.
Zurück zum Zitat Guiducci C, Stagni C, Fischetti A, Mastromatteo U, Benini L, Riccoricco B (2006) Microelectrodes on a silicon chip for label-free capacitive DNA sensing. IEEE Sensors J 6(5):1084–1093CrossRef Guiducci C, Stagni C, Fischetti A, Mastromatteo U, Benini L, Riccoricco B (2006) Microelectrodes on a silicon chip for label-free capacitive DNA sensing. IEEE Sensors J 6(5):1084–1093CrossRef
40.
Zurück zum Zitat Kerman K, Ozkan D, Kara P, Meric B, Gooding JJ, Ozsoz M (2002) Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal Chim Acta 462(1):39–47CrossRef Kerman K, Ozkan D, Kara P, Meric B, Gooding JJ, Ozsoz M (2002) Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal Chim Acta 462(1):39–47CrossRef
41.
Zurück zum Zitat Shervedani RK, Mehrjardi AH, Zamiri N (2006) A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 69(2):201–208CrossRef Shervedani RK, Mehrjardi AH, Zamiri N (2006) A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 69(2):201–208CrossRef
42.
Zurück zum Zitat Berdondini L, van der Wal PD, de Rooij NF, Koudelka-Hep M (2004) Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices. Sensors Actuators B Chem 99(2–3):505–510CrossRef Berdondini L, van der Wal PD, de Rooij NF, Koudelka-Hep M (2004) Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices. Sensors Actuators B Chem 99(2–3):505–510CrossRef
43.
Zurück zum Zitat Mallory GO, Hajdu JB (1990) Electroless plating: fundamentals and applications. William Andrew, Orlando Mallory GO, Hajdu JB (1990) Electroless plating: fundamentals and applications. William Andrew, Orlando
44.
Zurück zum Zitat Ko JW et al (2010) Electroless gold plating on aluminum patterned chips for CMOS-based sensor applications. J Electrochem Soc 157(1):D46–D49CrossRef Ko JW et al (2010) Electroless gold plating on aluminum patterned chips for CMOS-based sensor applications. J Electrochem Soc 157(1):D46–D49CrossRef
45.
Zurück zum Zitat Manickam A, Chevalier A, McDermott M, Ellington AD, Hassibi A (2010) A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans Biomed Circuits Syst 4(6):379–390CrossRef Manickam A, Chevalier A, McDermott M, Ellington AD, Hassibi A (2010) A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans Biomed Circuits Syst 4(6):379–390CrossRef
47.
Zurück zum Zitat Lemay SG, Laborde C, Renault C, Cossettini A, Selmi L, Widdershoven FP (2016) High-frequency nanocapacitor arrays: concept, recent developments, and outlook. Acc Chem Res 49(10):2355–2362CrossRef Lemay SG, Laborde C, Renault C, Cossettini A, Selmi L, Widdershoven FP (2016) High-frequency nanocapacitor arrays: concept, recent developments, and outlook. Acc Chem Res 49(10):2355–2362CrossRef
48.
Zurück zum Zitat Widdershoven F et al (2018) A CMOS pixelated Nanocapacitor biosensor platform for high-frequency impedance spectroscopy and imaging. IEEE Trans Biomed Circuits Syst Widdershoven F et al (2018) A CMOS pixelated Nanocapacitor biosensor platform for high-frequency impedance spectroscopy and imaging. IEEE Trans Biomed Circuits Syst
51.
Zurück zum Zitat Greve F, Lichtenberg J, Kirstein K, Frey U, Perriard J, Hierlemann A (2007) A perforated CMOS microchip for immobilization and activity monitoring of electrogenic cells. J Micromech Microeng 17(3):462CrossRef Greve F, Lichtenberg J, Kirstein K, Frey U, Perriard J, Hierlemann A (2007) A perforated CMOS microchip for immobilization and activity monitoring of electrogenic cells. J Micromech Microeng 17(3):462CrossRef
52.
Zurück zum Zitat Heer F, Hafizovic S, Franks W, Blau A, Ziegler C, Hierlemann A (2006) CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J Solid State Circuits 41(7):1620–1629CrossRef Heer F, Hafizovic S, Franks W, Blau A, Ziegler C, Hierlemann A (2006) CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J Solid State Circuits 41(7):1620–1629CrossRef
54.
Zurück zum Zitat Viswam V et al (2018) Impedance spectroscopy and electrophysiological imaging of cells with a high-density CMOS microelectrode array system. IEEE Trans Biomed Circuits Syst 12:1356–1368CrossRef Viswam V et al (2018) Impedance spectroscopy and electrophysiological imaging of cells with a high-density CMOS microelectrode array system. IEEE Trans Biomed Circuits Syst 12:1356–1368CrossRef
56.
Zurück zum Zitat Lopez CM et al (2018) A multimodal CMOS MEA for high-throughput intracellular action potential measurements and impedance spectroscopy in drug-screening applications. IEEE J Solid State Circuits 53(11):3076–3086CrossRef Lopez CM et al (2018) A multimodal CMOS MEA for high-throughput intracellular action potential measurements and impedance spectroscopy in drug-screening applications. IEEE J Solid State Circuits 53(11):3076–3086CrossRef
57.
Zurück zum Zitat Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S (2000) Principles of neural science. McGraw-hill, New York Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S (2000) Principles of neural science. McGraw-hill, New York
58.
Zurück zum Zitat Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans Biomed Circuits Syst 3(6):388–397CrossRef Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans Biomed Circuits Syst 3(6):388–397CrossRef
59.
Zurück zum Zitat Patil PG, Turner DA (2008) The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics 5:137–146CrossRef Patil PG, Turner DA (2008) The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics 5:137–146CrossRef
60.
Zurück zum Zitat White JR, Levy T, Bishop W, Beaty JD (2010) Real-time decision fusion for multimodal neural prosthetic devices. PLoS One 5(3):e9493CrossRef White JR, Levy T, Bishop W, Beaty JD (2010) Real-time decision fusion for multimodal neural prosthetic devices. PLoS One 5(3):e9493CrossRef
61.
Zurück zum Zitat Roham M et al (2008) A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans Biomed Circuits Syst 2(1):3–9CrossRef Roham M et al (2008) A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans Biomed Circuits Syst 2(1):3–9CrossRef
62.
Zurück zum Zitat Murari K, Stanacevic M, Cauwenberghs G, Thakor NV (2005) Integrated potentiostat for neurotransmitter sensing. IEEE Eng Med Biol Mag 24(6):23–29CrossRef Murari K, Stanacevic M, Cauwenberghs G, Thakor NV (2005) Integrated potentiostat for neurotransmitter sensing. IEEE Eng Med Biol Mag 24(6):23–29CrossRef
63.
Zurück zum Zitat Johnson M, Franklin R, Scott K, Brown R, Kipke D (2006) Neural probes for concurrent detection of neurochemical and electrophysiological signals in vivo. In: 2005 IEEE engineering in medicine and biology 27th annual conference. IEEE, pp 7325–7328 Johnson M, Franklin R, Scott K, Brown R, Kipke D (2006) Neural probes for concurrent detection of neurochemical and electrophysiological signals in vivo. In: 2005 IEEE engineering in medicine and biology 27th annual conference. IEEE, pp 7325–7328
64.
Zurück zum Zitat Gosselin B (2011) Recent advances in neural recording microsystems. Sensors 11:4572–4597CrossRef Gosselin B (2011) Recent advances in neural recording microsystems. Sensors 11:4572–4597CrossRef
65.
Zurück zum Zitat Yuan X, Emmenegger V, Obien MEJ, Hierlemann A, Frey U (2018) Dual-mode microelectrode array featuring 20k electrodes and high SNR for extracellular recording of neural networks. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4 Yuan X, Emmenegger V, Obien MEJ, Hierlemann A, Frey U (2018) Dual-mode microelectrode array featuring 20k electrodes and high SNR for extracellular recording of neural networks. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4
66.
Zurück zum Zitat Huys R et al (2012) Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 12(7):1274–1280CrossRef Huys R et al (2012) Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 12(7):1274–1280CrossRef
67.
Zurück zum Zitat Bhatti A, Lee KH, Garmestani H, Lim CP (2017) Emerging trends in neuro engineering and neural computation. SpringerCrossRef Bhatti A, Lee KH, Garmestani H, Lim CP (2017) Emerging trends in neuro engineering and neural computation. SpringerCrossRef
68.
Zurück zum Zitat Bontorin G (2010) Intelligent multielectrode arrays: improving spatiotemporal performances in hybrid (living-artificial), real-time, closed-loop systems. Université Sciences et Technologies-Bordeaux I Bontorin G (2010) Intelligent multielectrode arrays: improving spatiotemporal performances in hybrid (living-artificial), real-time, closed-loop systems. Université Sciences et Technologies-Bordeaux I
69.
Zurück zum Zitat Robinson DA (1968) The electrical properties of metal microelectrodes. Proc IEEE 56(6):1065–1071CrossRef Robinson DA (1968) The electrical properties of metal microelectrodes. Proc IEEE 56(6):1065–1071CrossRef
70.
Zurück zum Zitat Thomas C Jr, Springer P, Loeb G, Berwald-Netter Y, Okun L (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74(1):61–66CrossRef Thomas C Jr, Springer P, Loeb G, Berwald-Netter Y, Okun L (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74(1):61–66CrossRef
71.
Zurück zum Zitat Gross GW, Rieske E, Kreutzberg G, Meyer A (1977) A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett 6(2–3):101–105CrossRef Gross GW, Rieske E, Kreutzberg G, Meyer A (1977) A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett 6(2–3):101–105CrossRef
72.
Zurück zum Zitat Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods 2(1):19–31CrossRef Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods 2(1):19–31CrossRef
73.
Zurück zum Zitat Regehr WG, Pine J, Cohan CS, Mischke MD, Tank DW (1989) Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J Neurosci Methods 30(2):91–106CrossRef Regehr WG, Pine J, Cohan CS, Mischke MD, Tank DW (1989) Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J Neurosci Methods 30(2):91–106CrossRef
74.
Zurück zum Zitat Maeda E, Robinson H, Kawana A (1995) The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J Neurosci 15(10):6834–6845CrossRef Maeda E, Robinson H, Kawana A (1995) The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J Neurosci 15(10):6834–6845CrossRef
75.
Zurück zum Zitat Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M (1999) A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 93(1):61–67CrossRef Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M (1999) A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 93(1):61–67CrossRef
76.
Zurück zum Zitat Müller J et al (2015) High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15(13):2767–2780CrossRef Müller J et al (2015) High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15(13):2767–2780CrossRef
77.
Zurück zum Zitat Bigas M, Cabruja E, Forest J, Salvi J (2006) Review of CMOS image sensors. Microelectron J 37(5):433–451CrossRef Bigas M, Cabruja E, Forest J, Salvi J (2006) Review of CMOS image sensors. Microelectron J 37(5):433–451CrossRef
78.
Zurück zum Zitat Marblestone AH et al (2013) Physical principles for scalable neural recording. Front Comput Neurosci 7:137CrossRef Marblestone AH et al (2013) Physical principles for scalable neural recording. Front Comput Neurosci 7:137CrossRef
79.
Zurück zum Zitat Willemin M et al (2001) Optical characterization methods for solid-state image sensors. Opt Lasers Eng 36(2):185–194CrossRef Willemin M et al (2001) Optical characterization methods for solid-state image sensors. Opt Lasers Eng 36(2):185–194CrossRef
80.
Zurück zum Zitat Hierlemann A, Frey U, Hafizovic S, Heer F (2010) Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE 99(2):252–284CrossRef Hierlemann A, Frey U, Hafizovic S, Heer F (2010) Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE 99(2):252–284CrossRef
81.
Zurück zum Zitat Shahrokhi F, Abdelhalim K, Serletis D, Carlen PL, Genov R (2010) The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans Biomed Circuits Syst 4(3):149–161CrossRef Shahrokhi F, Abdelhalim K, Serletis D, Carlen PL, Genov R (2010) The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans Biomed Circuits Syst 4(3):149–161CrossRef
82.
Zurück zum Zitat Muller R, Gambini S, Rabaey JM (2011) A 0.013 mm, 5 W, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid State Circuits 47(1):232–243CrossRef Muller R, Gambini S, Rabaey JM (2011) A 0.013 mm, 5 W, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid State Circuits 47(1):232–243CrossRef
83.
Zurück zum Zitat Ogi J et al (2017) Twenty-four-micrometer-pitch microelectrode array with 6912-channel readout at 12 kHz via highly scalable implementation for high-spatial-resolution mapping of action potentials. Biointerphases 12(5):05F402CrossRef Ogi J et al (2017) Twenty-four-micrometer-pitch microelectrode array with 6912-channel readout at 12 kHz via highly scalable implementation for high-spatial-resolution mapping of action potentials. Biointerphases 12(5):05F402CrossRef
84.
Zurück zum Zitat Angotzi GN et al (2017) A high temporal resolution multiscale recording system for in vivo neural studies. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–4 Angotzi GN et al (2017) A high temporal resolution multiscale recording system for in vivo neural studies. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–4
85.
Zurück zum Zitat Berdondini L, Overstolz T, De Rooij N, Koudelka-Hep M, Wany M, Seitz P (2001) High-density microelectrode arrays for electrophysiological activity imaging of neuronal networks. In: ICECS 2001. 8th IEEE international conference on electronics, circuits and systems (Cat. No. 01EX483), vol 3. IEEE, pp 1239–1242CrossRef Berdondini L, Overstolz T, De Rooij N, Koudelka-Hep M, Wany M, Seitz P (2001) High-density microelectrode arrays for electrophysiological activity imaging of neuronal networks. In: ICECS 2001. 8th IEEE international conference on electronics, circuits and systems (Cat. No. 01EX483), vol 3. IEEE, pp 1239–1242CrossRef
86.
Zurück zum Zitat Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439CrossRef Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439CrossRef
87.
Zurück zum Zitat Livi P, Heer F, Frey U, Bakkum DJ, Hierlemann A (2010) Compact voltage and current stimulation buffer for high-density microelectrode arrays. IEEE Trans Biomed Circuits Syst 4(6):372–378CrossRef Livi P, Heer F, Frey U, Bakkum DJ, Hierlemann A (2010) Compact voltage and current stimulation buffer for high-density microelectrode arrays. IEEE Trans Biomed Circuits Syst 4(6):372–378CrossRef
88.
Zurück zum Zitat Lopez CM et al (2013) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid State Circuits 49(1):248–261CrossRef Lopez CM et al (2013) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid State Circuits 49(1):248–261CrossRef
89.
Zurück zum Zitat Lopez CM et al (2016) 22.7 A 966-electrode neural probe with 384 configurable channels in 0.13 μm SOI CMOS. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 392–393CrossRef Lopez CM et al (2016) 22.7 A 966-electrode neural probe with 384 configurable channels in 0.13 μm SOI CMOS. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 392–393CrossRef
90.
Zurück zum Zitat Viswam V et al (2016) 22.8 Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 394–396CrossRef Viswam V et al (2016) 22.8 Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 394–396CrossRef
91.
Zurück zum Zitat Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 1:70–71CrossRef Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 1:70–71CrossRef
92.
Zurück zum Zitat Kaisti M (2017) Detection principles of biological and chemical FET sensors. Biosens Bioelectron 98:437–448CrossRef Kaisti M (2017) Detection principles of biological and chemical FET sensors. Biosens Bioelectron 98:437–448CrossRef
93.
Zurück zum Zitat Bausells J, Carrabina J, Errachid A, Merlos A (1999) Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors Actuators B Chem 57(1–3):56–62CrossRef Bausells J, Carrabina J, Errachid A, Merlos A (1999) Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors Actuators B Chem 57(1–3):56–62CrossRef
94.
Zurück zum Zitat Martinoia S, Grattarola M, Massobrio G (1992) Modelling non-ideal behaviours in H+-sensitive FETs with SPICE. Sensors Actuators B Chem 7(1–3):561–564CrossRef Martinoia S, Grattarola M, Massobrio G (1992) Modelling non-ideal behaviours in H+-sensitive FETs with SPICE. Sensors Actuators B Chem 7(1–3):561–564CrossRef
95.
Zurück zum Zitat Massobrio G, Martinoia S, Grattarola M (1994) Use of SPICE for modeling silicon-based chemical sensors. Sens Mater 6:101–101 Massobrio G, Martinoia S, Grattarola M (1994) Use of SPICE for modeling silicon-based chemical sensors. Sens Mater 6:101–101
96.
Zurück zum Zitat Massobrio G, Martinoia S (1996) Modelling the ISFET behaviour under temperature variations using BIOSPICE. Electron Lett 32(10):936–938CrossRef Massobrio G, Martinoia S (1996) Modelling the ISFET behaviour under temperature variations using BIOSPICE. Electron Lett 32(10):936–938CrossRef
97.
Zurück zum Zitat Martinoia S, Lorenzelli L, Massobrio G, Conci P, Lui A (1998) Temperature effects on the ISFET behaviour: simulations and measurements. Sensors Actuators B Chem 50(1):60–68CrossRef Martinoia S, Lorenzelli L, Massobrio G, Conci P, Lui A (1998) Temperature effects on the ISFET behaviour: simulations and measurements. Sensors Actuators B Chem 50(1):60–68CrossRef
98.
Zurück zum Zitat Martinoia S, Massobrio G (2000) A behavioral macromodel of the ISFET in SPICE. Sensors Actuators B Chem 62(3):182–189CrossRef Martinoia S, Massobrio G (2000) A behavioral macromodel of the ISFET in SPICE. Sensors Actuators B Chem 62(3):182–189CrossRef
99.
Zurück zum Zitat Fernandes PG et al (2012) SPICE macromodel of silicon-on-insulator-field-effect-transistor-based biological sensors. Sensors Actuators B Chem 161(1):163–170CrossRef Fernandes PG et al (2012) SPICE macromodel of silicon-on-insulator-field-effect-transistor-based biological sensors. Sensors Actuators B Chem 161(1):163–170CrossRef
100.
Zurück zum Zitat Van Hal R, Eijkel J, Bergveld P (1995) A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors Actuators B Chem 24(1–3):201–205 Van Hal R, Eijkel J, Bergveld P (1995) A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors Actuators B Chem 24(1–3):201–205
101.
Zurück zum Zitat Sinha S (2014) Modeling and simulation of ISFET microsensor for different sensing films. In: ISSS international conference on smart materials, Structures and Systems Sinha S (2014) Modeling and simulation of ISFET microsensor for different sensing films. In: ISSS international conference on smart materials, Structures and Systems
102.
Zurück zum Zitat Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans 1: Phys Chem Condensed Phases 70:1807–1818CrossRef Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans 1: Phys Chem Condensed Phases 70:1807–1818CrossRef
103.
Zurück zum Zitat Ben-Yaakov D, Andelman D, Podgornik R, Harries D (2011) Ion-specific hydration effects: extending the Poisson-Boltzmann theory. Curr Opin Colloid Interface Sci 16(6):542–550CrossRef Ben-Yaakov D, Andelman D, Podgornik R, Harries D (2011) Ion-specific hydration effects: extending the Poisson-Boltzmann theory. Curr Opin Colloid Interface Sci 16(6):542–550CrossRef
104.
Zurück zum Zitat Ozcelik HG, Sozen Y, Sahin H, Barisik M (2020) Parametrizing nonbonded interactions between silica and water from first principles. Appl Surf Sci 504:144359CrossRef Ozcelik HG, Sozen Y, Sahin H, Barisik M (2020) Parametrizing nonbonded interactions between silica and water from first principles. Appl Surf Sci 504:144359CrossRef
105.
Zurück zum Zitat Jiang G, Cheng C, Li D, Liu JZ (2016) Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes. Nano Res 9(1):174–186CrossRef Jiang G, Cheng C, Li D, Liu JZ (2016) Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes. Nano Res 9(1):174–186CrossRef
106.
Zurück zum Zitat Shepherd L, Toumazou C (2005) Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sensors Actuators B Chem 107(1):468–473CrossRef Shepherd L, Toumazou C (2005) Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sensors Actuators B Chem 107(1):468–473CrossRef
107.
Zurück zum Zitat Miscourides N, Georgiou P (2016) Linear current-mode ISFET arrays. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 2827–2830CrossRef Miscourides N, Georgiou P (2016) Linear current-mode ISFET arrays. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 2827–2830CrossRef
108.
Zurück zum Zitat Shoorideh K, Chui CO (2012) Optimization of the sensitivity of FET-based biosensors via biasing and surface charge engineering. IEEE Trans Electron Devices 59(11):3104–3110CrossRef Shoorideh K, Chui CO (2012) Optimization of the sensitivity of FET-based biosensors via biasing and surface charge engineering. IEEE Trans Electron Devices 59(11):3104–3110CrossRef
109.
Zurück zum Zitat Syu Y-C, Hsu W-E, Lin C-T (2018) Field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol 7(7):Q3196CrossRef Syu Y-C, Hsu W-E, Lin C-T (2018) Field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol 7(7):Q3196CrossRef
110.
Zurück zum Zitat Chen S, Bomer JG, Carlen ET, van den Berg A (2011) Al2O3/silicon nanoISFET with near ideal Nernstian response. Nano Lett 11(6):2334–2341CrossRef Chen S, Bomer JG, Carlen ET, van den Berg A (2011) Al2O3/silicon nanoISFET with near ideal Nernstian response. Nano Lett 11(6):2334–2341CrossRef
111.
Zurück zum Zitat Van Der Wal P et al (2004) High-k dielectrics for use as ISFET gate oxides. In: Sensors, 2004 IEEE. IEEE, pp 677–680 Van Der Wal P et al (2004) High-k dielectrics for use as ISFET gate oxides. In: Sensors, 2004 IEEE. IEEE, pp 677–680
112.
Zurück zum Zitat Baldacchini C, Montanarella AF, Francioso L, Signore MA, Cannistraro S, Bizzarri AR (2020) A reliable biofet immunosensor for detection of p53 tumour suppressor in physiological-like environment. Sensors 20(21):6364CrossRef Baldacchini C, Montanarella AF, Francioso L, Signore MA, Cannistraro S, Bizzarri AR (2020) A reliable biofet immunosensor for detection of p53 tumour suppressor in physiological-like environment. Sensors 20(21):6364CrossRef
113.
Zurück zum Zitat Pullano SA et al (2018) EGFET-based sensors for bioanalytical applications: a review. Sensors 18(11):4042CrossRef Pullano SA et al (2018) EGFET-based sensors for bioanalytical applications: a review. Sensors 18(11):4042CrossRef
114.
Zurück zum Zitat Knopfmacher O et al (2010) Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett 10(6):2268–2274CrossRef Knopfmacher O et al (2010) Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett 10(6):2268–2274CrossRef
115.
Zurück zum Zitat Spijkman MJ et al (2010) Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Adv Funct Mater 20(6):898–905CrossRef Spijkman MJ et al (2010) Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Adv Funct Mater 20(6):898–905CrossRef
116.
Zurück zum Zitat Khamaisi B, Vaknin O, Shaya O, Ashkenasy N (2010) Electrical performance of silicon-on-insulator field-effect transistors with multiple top-gate organic layers in electrolyte solution. ACS Nano 4(8):4601–4608CrossRef Khamaisi B, Vaknin O, Shaya O, Ashkenasy N (2010) Electrical performance of silicon-on-insulator field-effect transistors with multiple top-gate organic layers in electrolyte solution. ACS Nano 4(8):4601–4608CrossRef
117.
Zurück zum Zitat Duarte-Guevara C et al (2014) Enhanced biosensing resolution with foundry fabricated individually addressable dual-gated ISFETs. Anal Chem 86(16):8359–8367CrossRef Duarte-Guevara C et al (2014) Enhanced biosensing resolution with foundry fabricated individually addressable dual-gated ISFETs. Anal Chem 86(16):8359–8367CrossRef
118.
Zurück zum Zitat Go J, Nair PR, Alam MA (2012) Theory of signal and noise in double-gated nanoscale electronic pH sensors. J Appl Phys 112(3) Go J, Nair PR, Alam MA (2012) Theory of signal and noise in double-gated nanoscale electronic pH sensors. J Appl Phys 112(3)
119.
Zurück zum Zitat Huang Y-J et al (2015) High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC. In: 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, pp 29.2. 1–29.2. 4CrossRef Huang Y-J et al (2015) High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC. In: 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, pp 29.2. 1–29.2. 4CrossRef
120.
Zurück zum Zitat Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853CrossRef Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853CrossRef
121.
Zurück zum Zitat Hahm J-I, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54CrossRef Hahm J-I, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54CrossRef
122.
Zurück zum Zitat Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24(8):2504–2508CrossRef Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24(8):2504–2508CrossRef
123.
Zurück zum Zitat Agarwal A, Buddharaju K, Lao I, Singh N, Balasubramanian N, Kwong D (2008) Silicon nanowire sensor array using top–down CMOS technology. Sensors Actuators A Phys 145:207–213CrossRef Agarwal A, Buddharaju K, Lao I, Singh N, Balasubramanian N, Kwong D (2008) Silicon nanowire sensor array using top–down CMOS technology. Sensors Actuators A Phys 145:207–213CrossRef
124.
Zurück zum Zitat Gao Z et al (2007) Silicon nanowire arrays for label-free detection of DNA. Anal Chem 79(9):3291–3297CrossRef Gao Z et al (2007) Silicon nanowire arrays for label-free detection of DNA. Anal Chem 79(9):3291–3297CrossRef
125.
Zurück zum Zitat Gao A et al (2011) Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11(9):3974–3978CrossRef Gao A et al (2011) Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11(9):3974–3978CrossRef
126.
Zurück zum Zitat Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301CrossRef Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301CrossRef
127.
Zurück zum Zitat Mishra NN et al (2008) Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor. Lab Chip 8(6):868–871CrossRef Mishra NN et al (2008) Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor. Lab Chip 8(6):868–871CrossRef
128.
Zurück zum Zitat Chua JH, Chee R-E, Agarwal A, Wong SM, Zhang G-J (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81(15):6266–6271CrossRef Chua JH, Chee R-E, Agarwal A, Wong SM, Zhang G-J (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81(15):6266–6271CrossRef
129.
Zurück zum Zitat Hakim MM et al (2012) Thin film polycrystalline silicon nanowire biosensors. Nano Lett 12(4):1868–1872CrossRef Hakim MM et al (2012) Thin film polycrystalline silicon nanowire biosensors. Nano Lett 12(4):1868–1872CrossRef
130.
Zurück zum Zitat Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci 101(39):14017–14022CrossRef Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci 101(39):14017–14022CrossRef
131.
Zurück zum Zitat Elibol O, Morisette D, Akin D, Denton J, Bashir R (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(22):4613–4615CrossRef Elibol O, Morisette D, Akin D, Denton J, Bashir R (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(22):4613–4615CrossRef
132.
Zurück zum Zitat Torsi L, Magliulo M, Manoli K, Palazzo G (2013) Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev 42(22):8612–8628CrossRef Torsi L, Magliulo M, Manoli K, Palazzo G (2013) Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev 42(22):8612–8628CrossRef
133.
Zurück zum Zitat Yang SY et al (2010) Electrochemical transistors with ionic liquids for enzymatic sensing. Chem Commun 46(42):7972–7974CrossRef Yang SY et al (2010) Electrochemical transistors with ionic liquids for enzymatic sensing. Chem Commun 46(42):7972–7974CrossRef
134.
Zurück zum Zitat Lai S, Demelas M, Casula G, Cosseddu P, Barbaro M, Bonfiglio A (2012) Ultralow voltage, OTFT-based sensor for label-free DNA detection. Adv Mater 25(1):103–107CrossRef Lai S, Demelas M, Casula G, Cosseddu P, Barbaro M, Bonfiglio A (2012) Ultralow voltage, OTFT-based sensor for label-free DNA detection. Adv Mater 25(1):103–107CrossRef
135.
Zurück zum Zitat Mulla MY et al (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6(1):6010MathSciNetCrossRef Mulla MY et al (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6(1):6010MathSciNetCrossRef
136.
Zurück zum Zitat Magliulo M et al (2016) Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Anal Bioanal Chem 408:3943–3952CrossRef Magliulo M et al (2016) Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Anal Bioanal Chem 408:3943–3952CrossRef
137.
Zurück zum Zitat Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
138.
Zurück zum Zitat Wang Z, Jia Y (2018) Graphene solution-gated field effect transistor DNA sensor fabricated by liquid exfoliation and double glutaraldehyde cross-linking. Carbon 130:758–767CrossRef Wang Z, Jia Y (2018) Graphene solution-gated field effect transistor DNA sensor fabricated by liquid exfoliation and double glutaraldehyde cross-linking. Carbon 130:758–767CrossRef
139.
Zurück zum Zitat Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang G-J (2015) Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces 7(31):16953–16959CrossRef Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang G-J (2015) Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces 7(31):16953–16959CrossRef
140.
Zurück zum Zitat Gao A, Lu N, Wang Y, Li T (2016) Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci Rep 6(1):22554CrossRef Gao A, Lu N, Wang Y, Li T (2016) Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci Rep 6(1):22554CrossRef
141.
Zurück zum Zitat Sarangadharan I et al (2018) High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron 100:282–289CrossRef Sarangadharan I et al (2018) High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron 100:282–289CrossRef
142.
Zurück zum Zitat Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461CrossRef Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461CrossRef
143.
Zurück zum Zitat Li H, Han Y, Zhao H, Jafri H, Tian B (2021) Dyes as labels in biosensing. In: Dyes and pigments-novel applications and waste treatment. IntechOpen Li H, Han Y, Zhao H, Jafri H, Tian B (2021) Dyes as labels in biosensing. In: Dyes and pigments-novel applications and waste treatment. IntechOpen
144.
Zurück zum Zitat De Vos K (2010) Label-free silicon photonics biosensor platform withmicroring resonators. Ghent University De Vos K (2010) Label-free silicon photonics biosensor platform withmicroring resonators. Ghent University
145.
Zurück zum Zitat Hong L, McManus S, Yang H, Sengupta K (2015) A fully integrated CMOS fluorescence biosensor with on-chip nanophotonic filter. In: 2015 Symposium on VLSI Circuits (VLSI Circuits). IEEE, pp C206–C207CrossRef Hong L, McManus S, Yang H, Sengupta K (2015) A fully integrated CMOS fluorescence biosensor with on-chip nanophotonic filter. In: 2015 Symposium on VLSI Circuits (VLSI Circuits). IEEE, pp C206–C207CrossRef
146.
Zurück zum Zitat Jang B, Cao P, Chevalier A, Ellington A, Hassibi A (2009) A CMOS fluorescent-based biosensor microarray. In: 2009 IEEE international solid-state circuits conference-digest of technical papers. IEEE, pp 436–437CrossRef Jang B, Cao P, Chevalier A, Ellington A, Hassibi A (2009) A CMOS fluorescent-based biosensor microarray. In: 2009 IEEE international solid-state circuits conference-digest of technical papers. IEEE, pp 436–437CrossRef
147.
Zurück zum Zitat Khiarak MN, Martel S, De Koninck Y, Gosselin B (2019) High-DR CMOS fluorescence biosensor with extended counting ADC and noise cancellation. IEEE Trans Circuits Syst I: Regular Papers 66(6):2077–2087CrossRef Khiarak MN, Martel S, De Koninck Y, Gosselin B (2019) High-DR CMOS fluorescence biosensor with extended counting ADC and noise cancellation. IEEE Trans Circuits Syst I: Regular Papers 66(6):2077–2087CrossRef
148.
Zurück zum Zitat Manickam A et al (2017) A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J Solid State Circuits 52(11):2857–2870CrossRef Manickam A et al (2017) A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J Solid State Circuits 52(11):2857–2870CrossRef
149.
Zurück zum Zitat Steglich P, Bondarenko S, Mai C, Paul M, Weller MG, Mai A (2020) CMOS-compatible silicon photonic sensor for refractive index sensing using local back-side release. IEEE Photon Technol Lett 32(19):1241–1244CrossRef Steglich P, Bondarenko S, Mai C, Paul M, Weller MG, Mai A (2020) CMOS-compatible silicon photonic sensor for refractive index sensing using local back-side release. IEEE Photon Technol Lett 32(19):1241–1244CrossRef
150.
Zurück zum Zitat Strianese M, Staiano M, Ruggiero G, Labella T, Pellecchia C, D’Auria S (2012) Fluorescence-based biosensors. In: Spectroscopic methods of analysis: methods and protocols, pp 193–216CrossRef Strianese M, Staiano M, Ruggiero G, Labella T, Pellecchia C, D’Auria S (2012) Fluorescence-based biosensors. In: Spectroscopic methods of analysis: methods and protocols, pp 193–216CrossRef
151.
Zurück zum Zitat Zhu C, Hong L, Yang H, Sengupta K (2022) A packaged multiplexed fluorescent biomolecular sensor array and ultralow-power wireless interface in CMOS for ingestible electronic applications. IEEE Sensors J 22(24):24060–24074CrossRef Zhu C, Hong L, Yang H, Sengupta K (2022) A packaged multiplexed fluorescent biomolecular sensor array and ultralow-power wireless interface in CMOS for ingestible electronic applications. IEEE Sensors J 22(24):24060–24074CrossRef
152.
Zurück zum Zitat Zhu C, Wen Y, Liu T, Yang H, Sengupta K (2023) An ingestible pill with CMOS fluorescence sensor Array, bi-directional wireless Interface and packaged optics for in-vivo bio-molecular sensing. IEEE Trans Biomed Circuits Syst Zhu C, Wen Y, Liu T, Yang H, Sengupta K (2023) An ingestible pill with CMOS fluorescence sensor Array, bi-directional wireless Interface and packaged optics for in-vivo bio-molecular sensing. IEEE Trans Biomed Circuits Syst
153.
Zurück zum Zitat Simpson ML et al (2001) An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit. Sensors Actuators B Chem 72(2):134–140CrossRef Simpson ML et al (2001) An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit. Sensors Actuators B Chem 72(2):134–140CrossRef
154.
Zurück zum Zitat Eltoukhy H, Salama K, Gamal AE (2006) A 0.18 um CMOS bioluminescence detection lab-on-chip. IEEE J Solid State Circuits 41(3):651–662CrossRef Eltoukhy H, Salama K, Gamal AE (2006) A 0.18 um CMOS bioluminescence detection lab-on-chip. IEEE J Solid State Circuits 41(3):651–662CrossRef
155.
Zurück zum Zitat Liu Q et al (2022) A threshold-based bioluminescence detector with a CMOS-integrated photodiode Array in 65 nm for a multi-diagnostic ingestible capsule. IEEE J Solid State Circuits Liu Q et al (2022) A threshold-based bioluminescence detector with a CMOS-integrated photodiode Array in 65 nm for a multi-diagnostic ingestible capsule. IEEE J Solid State Circuits
156.
Zurück zum Zitat Chang Y-W, Yu P-C, Huang Y-T, Yang Y-S (2007) A CMOS-compatible optical biosensing system based on visible absorption spectroscopy. In: 2007 IEEE conference on electron devices and solid-state circuits. IEEE, pp 1099–1102CrossRef Chang Y-W, Yu P-C, Huang Y-T, Yang Y-S (2007) A CMOS-compatible optical biosensing system based on visible absorption spectroscopy. In: 2007 IEEE conference on electron devices and solid-state circuits. IEEE, pp 1099–1102CrossRef
157.
Zurück zum Zitat Chang Y-W, Yu P-C, Huang Y-T, Yang Y-S (2009) A high-sensitivity CMOS-compatible biosensing system based on absorption photometry. IEEE Sensors J 9(2):120–127CrossRef Chang Y-W, Yu P-C, Huang Y-T, Yang Y-S (2009) A high-sensitivity CMOS-compatible biosensing system based on absorption photometry. IEEE Sensors J 9(2):120–127CrossRef
158.
Zurück zum Zitat Hofmann A, Meister M, Rolapp A, Reich P, Scholz F, Schäfer E (2021) Light absorption measurement with a CMOS biochip for quantitative immunoassay based point-of-care applications. IEEE Trans Biomed Circuits Syst 15(3):369–379CrossRef Hofmann A, Meister M, Rolapp A, Reich P, Scholz F, Schäfer E (2021) Light absorption measurement with a CMOS biochip for quantitative immunoassay based point-of-care applications. IEEE Trans Biomed Circuits Syst 15(3):369–379CrossRef
159.
Zurück zum Zitat Yan R, Mestas SP, Yuan G, Safaisini R, Dandy DS, Lear KL (2009) Label-free silicon photonic biosensor system with integrated detector array. Lab Chip 9(15):2163–2168CrossRef Yan R, Mestas SP, Yuan G, Safaisini R, Dandy DS, Lear KL (2009) Label-free silicon photonic biosensor system with integrated detector array. Lab Chip 9(15):2163–2168CrossRef
160.
Zurück zum Zitat K. De Vos, "Label-free silicon photonics biosensor platform with microring resonators," 2010 K. De Vos, "Label-free silicon photonics biosensor platform with microring resonators," 2010
161.
Zurück zum Zitat Luan E, Shoman H, Ratner DM, Cheung KC, Chrostowski L (2018) Silicon photonic biosensors using label-free detection. Sensors 18(10):3519CrossRef Luan E, Shoman H, Ratner DM, Cheung KC, Chrostowski L (2018) Silicon photonic biosensors using label-free detection. Sensors 18(10):3519CrossRef
162.
Zurück zum Zitat Adamopoulos C et al (2021) Lab-on-Chip for everyone: introducing an electronic-photonic platform for multiparametric biosensing using standard CMOS processes. IEEE Open J Solid-State Circuits Soc 1:198–208CrossRef Adamopoulos C et al (2021) Lab-on-Chip for everyone: introducing an electronic-photonic platform for multiparametric biosensing using standard CMOS processes. IEEE Open J Solid-State Circuits Soc 1:198–208CrossRef
163.
Zurück zum Zitat Mai A, Mai C, Steglich P (2022) From lab-on-chip to lab-in-app: challenges towards silicon photonic biosensors product developments. Results Opt 9:100317CrossRef Mai A, Mai C, Steglich P (2022) From lab-on-chip to lab-in-app: challenges towards silicon photonic biosensors product developments. Results Opt 9:100317CrossRef
164.
Zurück zum Zitat Ning S et al (2023) Silicon photonic chip-based biosensor for COVID-19 and flu detection with high sensitivity and specificity. In: Ultra-high-definition imaging systems VI, vol 12444. SPIE, pp 26–28 Ning S et al (2023) Silicon photonic chip-based biosensor for COVID-19 and flu detection with high sensitivity and specificity. In: Ultra-high-definition imaging systems VI, vol 12444. SPIE, pp 26–28
165.
Zurück zum Zitat Sajan SC, Singh A, Sharma PK, Kumar S (2023) Silicon photonics biosensors for cancer cells detection-a review. IEEE Sensors J Sajan SC, Singh A, Sharma PK, Kumar S (2023) Silicon photonics biosensors for cancer cells detection-a review. IEEE Sensors J
166.
Zurück zum Zitat Suarasan S et al (2020) Superhydrophobic bowl-like SERS substrates patterned from CMOS sensors for extracellular vesicle characterization. J Mater Chem B 8(38):8845–8852CrossRef Suarasan S et al (2020) Superhydrophobic bowl-like SERS substrates patterned from CMOS sensors for extracellular vesicle characterization. J Mater Chem B 8(38):8845–8852CrossRef
167.
Zurück zum Zitat Ehrlich K et al (2017) pH sensing through a single optical fibre using SERS and CMOS SPAD line arrays. Opt Express 25(25):30976–30986CrossRef Ehrlich K et al (2017) pH sensing through a single optical fibre using SERS and CMOS SPAD line arrays. Opt Express 25(25):30976–30986CrossRef
168.
Zurück zum Zitat Wang L, Wang G, Yang K, Liu W (2023) Plasmonic biosensor with annular aperture array integrated on a resonant cavity LED. Opt Commun 535:129336CrossRef Wang L, Wang G, Yang K, Liu W (2023) Plasmonic biosensor with annular aperture array integrated on a resonant cavity LED. Opt Commun 535:129336CrossRef
169.
Zurück zum Zitat Singh AK, Anwar M, Pradhan R, Ashar MS, Rai N, Dey S (2023) Surface Plasmon resonance based-optical biosensor: emerging diagnostic tool for early detection of diseases. J Biophotonics:e202200380 Singh AK, Anwar M, Pradhan R, Ashar MS, Rai N, Dey S (2023) Surface Plasmon resonance based-optical biosensor: emerging diagnostic tool for early detection of diseases. J Biophotonics:e202200380
170.
Zurück zum Zitat Shakoor A et al (2016) Plasmonic sensor monolithically integrated with a CMOS photodiode. ACS Photonics 3:1926–1933CrossRef Shakoor A et al (2016) Plasmonic sensor monolithically integrated with a CMOS photodiode. ACS Photonics 3:1926–1933CrossRef
171.
Zurück zum Zitat Salazar A, Camacho-Leon S, Martínez-Chapa SO, Rossetto O (2013) Towards a SPR-based biosensing platform incorporating a CMOS active column sensor. Analog Integr Circ Sig Process 77:365–372CrossRef Salazar A, Camacho-Leon S, Martínez-Chapa SO, Rossetto O (2013) Towards a SPR-based biosensing platform incorporating a CMOS active column sensor. Analog Integr Circ Sig Process 77:365–372CrossRef
172.
Zurück zum Zitat Koppa S, Joo Y (2013) Compact, low cost CMOS integrated SPR biosensor system. In: SENSORS, 2013 IEEE. IEEE, pp 1–4 Koppa S, Joo Y (2013) Compact, low cost CMOS integrated SPR biosensor system. In: SENSORS, 2013 IEEE. IEEE, pp 1–4
173.
174.
Zurück zum Zitat Hwang R-B (2021) A theoretical design of evanescent wave biosensors based on gate-controlled graphene surface plasmon resonance. Sci Rep 11:1–10 Hwang R-B (2021) A theoretical design of evanescent wave biosensors based on gate-controlled graphene surface plasmon resonance. Sci Rep 11:1–10
175.
Zurück zum Zitat Wang J, Sanchez MM, Yin Y, Herzer R, Ma L, Schmidt OG (2020) Silicon-based integrated label-free optofluidic biosensors: latest advances and roadmap. Adv Mater Technol 5:1901138CrossRef Wang J, Sanchez MM, Yin Y, Herzer R, Ma L, Schmidt OG (2020) Silicon-based integrated label-free optofluidic biosensors: latest advances and roadmap. Adv Mater Technol 5:1901138CrossRef
176.
Zurück zum Zitat Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM (2019) Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem:724 Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM (2019) Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem:724
177.
Zurück zum Zitat Xiao-Hong Z et al (2014) A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol a in water samples. Sci Rep 4:1–7CrossRef Xiao-Hong Z et al (2014) A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol a in water samples. Sci Rep 4:1–7CrossRef
178.
Zurück zum Zitat Wangüemert-Pérez JG et al (2014) Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Opt Lett 39:4442–4445CrossRef Wangüemert-Pérez JG et al (2014) Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Opt Lett 39:4442–4445CrossRef
179.
Zurück zum Zitat Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:2470–2487CrossRef Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:2470–2487CrossRef
180.
Zurück zum Zitat Hutchinson AM (1995) Evanescent wave biosensors. Mol Biotechnol 3:47–54CrossRef Hutchinson AM (1995) Evanescent wave biosensors. Mol Biotechnol 3:47–54CrossRef
181.
Zurück zum Zitat C. Adamopoulos and V. Stojanovic, "A fully integrated electronic-photonic platform for label-free biosensing," 2020 C. Adamopoulos and V. Stojanovic, "A fully integrated electronic-photonic platform for label-free biosensing," 2020
182.
Zurück zum Zitat Gowri A, Kumar NA, Anand BS (2021) Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of COVID-19–a minireview. TrAC Trends Anal Chem 137:116205CrossRef Gowri A, Kumar NA, Anand BS (2021) Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of COVID-19–a minireview. TrAC Trends Anal Chem 137:116205CrossRef
183.
Zurück zum Zitat Strianese M, Staiano M, Ruggiero G, Labella T, Pellecchia C, D’Auria S (2012) Fluorescence-based biosensors. In: Spectroscopic methods of analysis. Springer, pp 193–216CrossRef Strianese M, Staiano M, Ruggiero G, Labella T, Pellecchia C, D’Auria S (2012) Fluorescence-based biosensors. In: Spectroscopic methods of analysis. Springer, pp 193–216CrossRef
184.
Zurück zum Zitat M. C. Morris, "Fluorescence-based biosensors: from concepts to applications," 2012 M. C. Morris, "Fluorescence-based biosensors: from concepts to applications," 2012
185.
Zurück zum Zitat Mader H, Li X, Saleh S, Link M, Kele P, Wolfbeis O (2008) Fluorescence methods and applications: spectroscopy, imaging, and probes. Ann N Y Acad Sci 1130:218CrossRef Mader H, Li X, Saleh S, Link M, Kele P, Wolfbeis O (2008) Fluorescence methods and applications: spectroscopy, imaging, and probes. Ann N Y Acad Sci 1130:218CrossRef
186.
Zurück zum Zitat Hassibi A et al (2018) Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip. Nat Biotechnol 36:738–745CrossRef Hassibi A et al (2018) Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip. Nat Biotechnol 36:738–745CrossRef
187.
Zurück zum Zitat Manickam A et al (2017) A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J Solid State Circuits 52:2857–2870CrossRef Manickam A et al (2017) A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J Solid State Circuits 52:2857–2870CrossRef
188.
Zurück zum Zitat Singh RR, Ho D, Nilchi A, Gulak G, Yau P, Genov R (2010) A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis. IEEE Trans Circuits Syst I: Regular Papers 57:1029–1038MathSciNetCrossRef Singh RR, Ho D, Nilchi A, Gulak G, Yau P, Genov R (2010) A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis. IEEE Trans Circuits Syst I: Regular Papers 57:1029–1038MathSciNetCrossRef
189.
Zurück zum Zitat Jang B, Cao P, Chevalier A, Ellington A, Hassibi A. A CMOS fluorescent-based biosensor microarray Jang B, Cao P, Chevalier A, Ellington A, Hassibi A. A CMOS fluorescent-based biosensor microarray
190.
Zurück zum Zitat Hong L, McManus S, Yang H, Sengupta K. A fully integrated CMOS fluorescence biosensor with on-chip nanophotonic filter Hong L, McManus S, Yang H, Sengupta K. A fully integrated CMOS fluorescence biosensor with on-chip nanophotonic filter
191.
Zurück zum Zitat Hong L, Li H, Yang H, Sengupta K (2017) Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS. IEEE J Solid State Circuits 52:2388–2406CrossRef Hong L, Li H, Yang H, Sengupta K (2017) Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS. IEEE J Solid State Circuits 52:2388–2406CrossRef
192.
Zurück zum Zitat Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRef Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRef
193.
Zurück zum Zitat Jiang Y et al (2018) A nano-filter-integrated CMOS image sensor for fluorescent biomedical imaging. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4 Jiang Y et al (2018) A nano-filter-integrated CMOS image sensor for fluorescent biomedical imaging. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4
194.
195.
Zurück zum Zitat DeHennis A, Getzlaff S, Grice D, Mailand M (2015) An NFC-enabled CMOS IC for a wireless fully implantable glucose sensor. IEEE Journal of Biomedical and Health Informatics 20:18–28CrossRef DeHennis A, Getzlaff S, Grice D, Mailand M (2015) An NFC-enabled CMOS IC for a wireless fully implantable glucose sensor. IEEE Journal of Biomedical and Health Informatics 20:18–28CrossRef
196.
Zurück zum Zitat Tyndall D, Rae B, Li D, Richardson J, Arlt J, Henderson R (2012) A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13 μm CMOS imaging technology. IEEE Tyndall D, Rae B, Li D, Richardson J, Arlt J, Henderson R (2012) A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13 μm CMOS imaging technology. IEEE
197.
Zurück zum Zitat Ta-chien DH et al (2011) Gene expression analysis with an integrated CMOS microarray by time-resolved fluorescence detection. Biosens Bioelectron 26:2660–2665CrossRef Ta-chien DH et al (2011) Gene expression analysis with an integrated CMOS microarray by time-resolved fluorescence detection. Biosens Bioelectron 26:2660–2665CrossRef
198.
Zurück zum Zitat Yoon H-J, Itoh S, Kawahito S (2009) A CMOS image sensor with in-pixel two-stage charge transfer for fluorescence lifetime imaging. IEEE Transactions on Electron Devices 56:214–221CrossRef Yoon H-J, Itoh S, Kawahito S (2009) A CMOS image sensor with in-pixel two-stage charge transfer for fluorescence lifetime imaging. IEEE Transactions on Electron Devices 56:214–221CrossRef
199.
Zurück zum Zitat Ta-chien DH, Sorgenfrei S, Gong P, Levicky R, Shepard KL (2009) A 0.18-$\mu $ m CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J Solid State Circuits 44:1644–1654CrossRef Ta-chien DH, Sorgenfrei S, Gong P, Levicky R, Shepard KL (2009) A 0.18-$\mu $ m CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J Solid State Circuits 44:1644–1654CrossRef
200.
Zurück zum Zitat Stoppa D, Mosconi D, Pancheri L, Gonzo L (2009) Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements. IEEE Sensors J 9:1084–1090CrossRef Stoppa D, Mosconi D, Pancheri L, Gonzo L (2009) Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements. IEEE Sensors J 9:1084–1090CrossRef
201.
Zurück zum Zitat Patounakis G, Shepard KL, Levicky R (2006) Active CMOS array sensor for time-resolved fluorescence detection. IEEE J Solid State Circuits 41:2521–2530CrossRef Patounakis G, Shepard KL, Levicky R (2006) Active CMOS array sensor for time-resolved fluorescence detection. IEEE J Solid State Circuits 41:2521–2530CrossRef
202.
Zurück zum Zitat Zhang L, Niknejad AM (2019) Design and analysis of a microwave-optical dual modality biomolecular sensing platform. IEEE J Solid State Circuits 55:639–649CrossRef Zhang L, Niknejad AM (2019) Design and analysis of a microwave-optical dual modality biomolecular sensing platform. IEEE J Solid State Circuits 55:639–649CrossRef
203.
Zurück zum Zitat Khiarak MN et al (2018) A 17-bit 104-dB-DR high-precision low-power CMOS fluorescence biosensor with extended counting ADC and noise cancellation. In: 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS). IEEE, pp 100–103 Khiarak MN et al (2018) A 17-bit 104-dB-DR high-precision low-power CMOS fluorescence biosensor with extended counting ADC and noise cancellation. In: 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS). IEEE, pp 100–103
204.
Zurück zum Zitat Gradišnik V, Gumbarević D (2018) a-Si: H pin Photodiode as a Biosensor. In: Advances in Photodetectors-Research and Applications. IntechOpen Gradišnik V, Gumbarević D (2018) a-Si: H pin Photodiode as a Biosensor. In: Advances in Photodetectors-Research and Applications. IntechOpen
205.
Zurück zum Zitat Titus AH, Cheung MC, Chodavarapu VP (2011) CMOS photodetectors. Photodiodes-world activities in 2011. IntechOpen Titus AH, Cheung MC, Chodavarapu VP (2011) CMOS photodetectors. Photodiodes-world activities in 2011. IntechOpen
206.
207.
Zurück zum Zitat Mosconi D, Stoppa D, Pancheri L, Gonzo L, Simoni A (2006) CMOS single-photon avalanche diode array for time-resolved fluorescence detection. In: 2006 Proceedings of the 32nd European solid-state circuits conference. IEEE, pp 564–567CrossRef Mosconi D, Stoppa D, Pancheri L, Gonzo L, Simoni A (2006) CMOS single-photon avalanche diode array for time-resolved fluorescence detection. In: 2006 Proceedings of the 32nd European solid-state circuits conference. IEEE, pp 564–567CrossRef
208.
Zurück zum Zitat Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13(7–8):731–739CrossRef Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13(7–8):731–739CrossRef
209.
211.
Zurück zum Zitat Wohlfarth EP, Buschow KHJ (1989) Ferromagnetic Mater 4 Wohlfarth EP, Buschow KHJ (1989) Ferromagnetic Mater 4
213.
Zurück zum Zitat Marshall W (1955) Antiferromagnetism. Proc R Soc Lond Series A Math Phys Sci 232(1188):48–68 Marshall W (1955) Antiferromagnetism. Proc R Soc Lond Series A Math Phys Sci 232(1188):48–68
214.
Zurück zum Zitat Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13CrossRef Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13CrossRef
215.
Zurück zum Zitat Issadore D et al (2014) Magnetic sensing technology for molecular analyses. Lab Chip 14:2385–2397CrossRef Issadore D et al (2014) Magnetic sensing technology for molecular analyses. Lab Chip 14:2385–2397CrossRef
216.
Zurück zum Zitat Lee H, Yoon T-J, Figueiredo J-L, Swirski FK, Weissleder R (2009) Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc Natl Acad Sci 106(30):12459–12464CrossRef Lee H, Yoon T-J, Figueiredo J-L, Swirski FK, Weissleder R (2009) Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc Natl Acad Sci 106(30):12459–12464CrossRef
217.
Zurück zum Zitat Lee H, Yoon TJ, Weissleder R (2009) Ultrasensitive detection of bacteria using Core–Shell nanoparticles and an NMR-Filter system. Angew Chem 121(31):5767–5770CrossRef Lee H, Yoon TJ, Weissleder R (2009) Ultrasensitive detection of bacteria using Core–Shell nanoparticles and an NMR-Filter system. Angew Chem 121(31):5767–5770CrossRef
218.
Zurück zum Zitat Liong M, Tassa C, Shaw SY, Lee H, Weissleder R (2011) Multiplexed magnetic labeling amplification using oligonucleotide hybridization. Adv Mater 23:H254–H257CrossRef Liong M, Tassa C, Shaw SY, Lee H, Weissleder R (2011) Multiplexed magnetic labeling amplification using oligonucleotide hybridization. Adv Mater 23:H254–H257CrossRef
219.
Zurück zum Zitat Peterson VM, Castro CM, Lee H, Weissleder R (2012) Orthogonal amplification of nanoparticles for improved diagnostic sensing. ACS Nano 6:3506–3513CrossRef Peterson VM, Castro CM, Lee H, Weissleder R (2012) Orthogonal amplification of nanoparticles for improved diagnostic sensing. ACS Nano 6:3506–3513CrossRef
221.
Zurück zum Zitat Skucha K, Liu P, Megens M, Kim J, Boser B (2011) A compact Hall-effect sensor array for the detection and imaging of single magnetic beads in biomedical assays. In: 2011 16th international solid-state sensors, actuators and microsystems conference. IEEE, pp 1833–1836CrossRef Skucha K, Liu P, Megens M, Kim J, Boser B (2011) A compact Hall-effect sensor array for the detection and imaging of single magnetic beads in biomedical assays. In: 2011 16th international solid-state sensors, actuators and microsystems conference. IEEE, pp 1833–1836CrossRef
222.
Zurück zum Zitat Sze SM (2008) Semiconductor devices: physics and technology. Wiley Sze SM (2008) Semiconductor devices: physics and technology. Wiley
223.
Zurück zum Zitat Mosser V, Matringe N, Haddab Y (2017) A spinning current circuit for Hall measurements down to the nanotesla range. IEEE Trans Instrum Meas 66(4):637–650CrossRef Mosser V, Matringe N, Haddab Y (2017) A spinning current circuit for Hall measurements down to the nanotesla range. IEEE Trans Instrum Meas 66(4):637–650CrossRef
224.
Zurück zum Zitat Crescentini M, Marchesi M, Romani A, Tartagni M, Traverso PA (2018) A broadband, on-chip sensor based on Hall effect for current measurements in smart power circuits. IEEE Trans Instrum Meas 67(6):1470–1485CrossRef Crescentini M, Marchesi M, Romani A, Tartagni M, Traverso PA (2018) A broadband, on-chip sensor based on Hall effect for current measurements in smart power circuits. IEEE Trans Instrum Meas 67(6):1470–1485CrossRef
225.
Zurück zum Zitat Crescentini M et al (2020) Experimental assessment of a broadband current sensor based on the X-Hall architecture. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, pp 1–6 Crescentini M et al (2020) Experimental assessment of a broadband current sensor based on the X-Hall architecture. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, pp 1–6
226.
Zurück zum Zitat Crescentini M et al (2020) The X-Hall sensor: toward integrated broadband current sensing. IEEE Trans Instrum Meas 70:1–12 Crescentini M et al (2020) The X-Hall sensor: toward integrated broadband current sensing. IEEE Trans Instrum Meas 70:1–12
227.
Zurück zum Zitat Syeda SF, Crescentini M, Marchesi M, Traverso PA, Romani A (2023) A wideband and low-noise CMOS-integrated X-Hall current sensor operating in current mode. IEEE Trans Instrum Meas Syeda SF, Crescentini M, Marchesi M, Traverso PA, Romani A (2023) A wideband and low-noise CMOS-integrated X-Hall current sensor operating in current mode. IEEE Trans Instrum Meas
228.
Zurück zum Zitat Crescentini M, Syeda SF, Gibiino GP (2021) Hall-effect current sensors: principles of operation and implementation techniques. IEEE Sensors J 22(11):10137–10151CrossRef Crescentini M, Syeda SF, Gibiino GP (2021) Hall-effect current sensors: principles of operation and implementation techniques. IEEE Sensors J 22(11):10137–10151CrossRef
229.
Zurück zum Zitat Liu PP et al (2012) Magnetic relaxation detector for microbead labels. IEEE J Solid State Circuits 47(4):1056–1064CrossRef Liu PP et al (2012) Magnetic relaxation detector for microbead labels. IEEE J Solid State Circuits 47(4):1056–1064CrossRef
231.
Zurück zum Zitat Gambini S, Skucha K, Liu PP, Kim J, Krigel R (2012) A 10 kPixel CMOS hall sensor array with baseline suppression and parallel readout for immunoassays. IEEE J Solid State Circuits 48(1):302–317CrossRef Gambini S, Skucha K, Liu PP, Kim J, Krigel R (2012) A 10 kPixel CMOS hall sensor array with baseline suppression and parallel readout for immunoassays. IEEE J Solid State Circuits 48(1):302–317CrossRef
232.
Zurück zum Zitat Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser B (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22(6):1327–1338CrossRef Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser B (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22(6):1327–1338CrossRef
233.
Zurück zum Zitat Fan H, Yue H, Bonizzoni E, Feng Q, Wei Q (2023) Modelling of three-axis hall effect sensor based on CMOS process. IEEE Sensors J Fan H, Yue H, Bonizzoni E, Feng Q, Wei Q (2023) Modelling of three-axis hall effect sensor based on CMOS process. IEEE Sensors J
234.
Zurück zum Zitat Zou H, Lei K-M, Martins RP, Mak P-I (2023) A CMOS hall sensors array with integrated readout circuit resilient to local magnetic interference from current-carrying traces. IEEE Sensors J Zou H, Lei K-M, Martins RP, Mak P-I (2023) A CMOS hall sensors array with integrated readout circuit resilient to local magnetic interference from current-carrying traces. IEEE Sensors J
235.
Zurück zum Zitat Xu Y, Wang B, Hu X, Jiang L (2022) A CMOS front-end Hall sensor microsystem for linear magnetic field measurement with best tradeoff between sensitivity and SNR. IEEE Trans Instrum Meas 71:1–8 Xu Y, Wang B, Hu X, Jiang L (2022) A CMOS front-end Hall sensor microsystem for linear magnetic field measurement with best tradeoff between sensitivity and SNR. IEEE Trans Instrum Meas 71:1–8
236.
Zurück zum Zitat Liu PP et al (2012) Magnetic relaxation detector for microbead labels. IEEE J Solid State Circuits 47:1056–1064CrossRef Liu PP et al (2012) Magnetic relaxation detector for microbead labels. IEEE J Solid State Circuits 47:1056–1064CrossRef
237.
Zurück zum Zitat Ausserlechner U (2023) Comments on “a CMOS front-end hall sensor microsystem for linear magnetic field measurement with best tradeoff between sensitivity and SNR”. IEEE Trans Instrum Meas 72:1–3CrossRef Ausserlechner U (2023) Comments on “a CMOS front-end hall sensor microsystem for linear magnetic field measurement with best tradeoff between sensitivity and SNR”. IEEE Trans Instrum Meas 72:1–3CrossRef
238.
Zurück zum Zitat Heidari H, Gatti U, Maloberti F (2015) Sensitivity characteristics of horizontal and vertical Hall sensors in the voltage-and current-mode. In: 2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME). IEEE, pp 330–333CrossRef Heidari H, Gatti U, Maloberti F (2015) Sensitivity characteristics of horizontal and vertical Hall sensors in the voltage-and current-mode. In: 2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME). IEEE, pp 330–333CrossRef
239.
Zurück zum Zitat Liu P (2012) A CMOS magnetic sensor chip for biomedical applications Liu P (2012) A CMOS magnetic sensor chip for biomedical applications
240.
Zurück zum Zitat Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser BE (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22:1327–1338CrossRef Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser BE (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22:1327–1338CrossRef
241.
Zurück zum Zitat Wang H, Chen Y, Hassibi A, Scherer A, Hajimiri A (2009) A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet. IEEE Wang H, Chen Y, Hassibi A, Scherer A, Hajimiri A (2009) A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet. IEEE
242.
Zurück zum Zitat Fullerton EE, Schuller IK (2007) The 2007 Nobel prize in physics: magnetism and transport at the nanoscale. ACS Nano 1:384–389CrossRef Fullerton EE, Schuller IK (2007) The 2007 Nobel prize in physics: magnetism and transport at the nanoscale. ACS Nano 1:384–389CrossRef
243.
Zurück zum Zitat Hardman U (1996) Magnetic thin film and multilayer systems: physics, analysis and industrial applications, Series in material science. Springer Hardman U (1996) Magnetic thin film and multilayer systems: physics, analysis and industrial applications, Series in material science. Springer
244.
Zurück zum Zitat Zhou X (2020) Magnetoresistive biosensor circuits and systems for ultrasensitive point-of-care diagnostics Zhou X (2020) Magnetoresistive biosensor circuits and systems for ultrasensitive point-of-care diagnostics
245.
Zurück zum Zitat Cubells-Beltrán M-D et al (2014) Monolithic integration of Giant magnetoresistance (GMR) devices onto standard processed CMOS dies. Microelectron J 45:702–707CrossRef Cubells-Beltrán M-D et al (2014) Monolithic integration of Giant magnetoresistance (GMR) devices onto standard processed CMOS dies. Microelectron J 45:702–707CrossRef
246.
Zurück zum Zitat Adem S, Jain S, Sveiven M, Zhou X, O’Donoghue AJ, Hall DA (2020) Giant magnetoresistive biosensors for real-time quantitative detection of protease activity. Sci Rep 10:1–10CrossRef Adem S, Jain S, Sveiven M, Zhou X, O’Donoghue AJ, Hall DA (2020) Giant magnetoresistive biosensors for real-time quantitative detection of protease activity. Sci Rep 10:1–10CrossRef
247.
Zurück zum Zitat De Boer BM, Kahlman J, Jansen T, Duric H, Veen J (2007) An integrated and sensitive detection platform for magneto-resistive biosensors. Biosens Bioelectron 22:2366–2370CrossRef De Boer BM, Kahlman J, Jansen T, Duric H, Veen J (2007) An integrated and sensitive detection platform for magneto-resistive biosensors. Biosens Bioelectron 22:2366–2370CrossRef
248.
Zurück zum Zitat Hall DA et al (2010) GMR biosensor arrays: a system perspective. Biosens Bioelectron 25:2051–2057CrossRef Hall DA et al (2010) GMR biosensor arrays: a system perspective. Biosens Bioelectron 25:2051–2057CrossRef
249.
Zurück zum Zitat Hall DA, Gaster RS, Makinwa KAA, Wang SX, Murmann B (2013) A 256 pixel magnetoresistive biosensor microarray in 0.18 μm CMOS. IEEE J Solid State Circuits 48:1290–1301CrossRef Hall DA, Gaster RS, Makinwa KAA, Wang SX, Murmann B (2013) A 256 pixel magnetoresistive biosensor microarray in 0.18 μm CMOS. IEEE J Solid State Circuits 48:1290–1301CrossRef
250.
Zurück zum Zitat Hall DA, Gaster RS, Osterfeld SJ, Makinwa K, Wang SX, Murmann B (2011) A 256 channel magnetoresistive biosensor microarray for quantitative proteomics. IEEE Hall DA, Gaster RS, Osterfeld SJ, Makinwa K, Wang SX, Murmann B (2011) A 256 channel magnetoresistive biosensor microarray for quantitative proteomics. IEEE
251.
Zurück zum Zitat Hall DA, Gaster RS, Osterfeld SJ, Murmann B, Wang SX (2010) GMR biosensor arrays: correction techniques for reproducibility and enhanced sensitivity. Biosens Bioelectron 25:2177–2181CrossRef Hall DA, Gaster RS, Osterfeld SJ, Murmann B, Wang SX (2010) GMR biosensor arrays: correction techniques for reproducibility and enhanced sensitivity. Biosens Bioelectron 25:2177–2181CrossRef
252.
Zurück zum Zitat Zhou X, Huang C-C, Hall DA (2017) Giant magnetoresistive biosensor array for detecting magnetorelaxation. IEEE Trans Biomed Circuits Syst 11:755–764CrossRef Zhou X, Huang C-C, Hall DA (2017) Giant magnetoresistive biosensor array for detecting magnetorelaxation. IEEE Trans Biomed Circuits Syst 11:755–764CrossRef
253.
Zurück zum Zitat Zhou X et al (2021) A 9.7-nTrms, 704-ms magnetic biosensor front-end for detecting magneto-relaxation. IEEE J Solid State Circuits 56:2171–2181CrossRef Zhou X et al (2021) A 9.7-nTrms, 704-ms magnetic biosensor front-end for detecting magneto-relaxation. IEEE J Solid State Circuits 56:2171–2181CrossRef
254.
Zurück zum Zitat Zhou X, Sveiven M, Hall DA (2019) 11.4 a fast-readout mismatch-insensitive magnetoresistive biosensor front-end achieving sub-ppm sensitivity. IEEE Zhou X, Sveiven M, Hall DA (2019) 11.4 a fast-readout mismatch-insensitive magnetoresistive biosensor front-end achieving sub-ppm sensitivity. IEEE
255.
Zurück zum Zitat Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53(4):318CrossRef Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53(4):318CrossRef
256.
Zurück zum Zitat Sun N, Liu Y, Lee H, Weissleder R, Ham D (2009) CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J Solid State Circuits 44(5):1629–1643CrossRef Sun N, Liu Y, Lee H, Weissleder R, Ham D (2009) CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J Solid State Circuits 44(5):1629–1643CrossRef
257.
Zurück zum Zitat Krummenacher P, Oguey H (1990) Smart temperature sensor in CMOS technology. Sensors Actuators A Phys 22(1–3):636–638CrossRef Krummenacher P, Oguey H (1990) Smart temperature sensor in CMOS technology. Sensors Actuators A Phys 22(1–3):636–638CrossRef
258.
Zurück zum Zitat Bianchi R, Dos Santos FV, Karam J, Courtois B, Pressecq F, Sifflet S (1998) CMOS compatible temperature sensor based on the lateral bipolar transistor for very wide temperature range applications. Sensors Actuators A Phys 71(1–2):3–9CrossRef Bianchi R, Dos Santos FV, Karam J, Courtois B, Pressecq F, Sifflet S (1998) CMOS compatible temperature sensor based on the lateral bipolar transistor for very wide temperature range applications. Sensors Actuators A Phys 71(1–2):3–9CrossRef
259.
Zurück zum Zitat Bianchi R, Karam J, Courtois B, Nadal R, Pressecq F, Sifflet S (2000) CMOS-compatible temperature sensor with digital output for wide temperature range applications. Microelectron J 31(9–10):803–810CrossRef Bianchi R, Karam J, Courtois B, Nadal R, Pressecq F, Sifflet S (2000) CMOS-compatible temperature sensor with digital output for wide temperature range applications. Microelectron J 31(9–10):803–810CrossRef
260.
Zurück zum Zitat Bakker A, Huijsing JH (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid State Circuits 31(7):933–937CrossRef Bakker A, Huijsing JH (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid State Circuits 31(7):933–937CrossRef
261.
Zurück zum Zitat Meijer GC (1996) Concepts for bandgap references and voltage measurement systems. In: Analog circuit design: low-noise, low-power, low-voltage; mixed-mode design with CAD tools; voltage, current and time references, pp 243–268CrossRef Meijer GC (1996) Concepts for bandgap references and voltage measurement systems. In: Analog circuit design: low-noise, low-power, low-voltage; mixed-mode design with CAD tools; voltage, current and time references, pp 243–268CrossRef
262.
Zurück zum Zitat Fruett F, Wang G, Meijer GC (2000) The piezojunction effect in NPN and PNP vertical transistors and its influence on silicon temperature sensors. Sensors Actuators A Phys 85(1–3):70–74CrossRef Fruett F, Wang G, Meijer GC (2000) The piezojunction effect in NPN and PNP vertical transistors and its influence on silicon temperature sensors. Sensors Actuators A Phys 85(1–3):70–74CrossRef
263.
Zurück zum Zitat Meijer GC, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensors J 1(3):225–234CrossRef Meijer GC, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensors J 1(3):225–234CrossRef
264.
Zurück zum Zitat Pertijs MA, Meijer GC, Huijsing JH (2004) Precision temperature measurement using CMOS substrate PNP transistors. IEEE Sensors J 4(3):294–300CrossRef Pertijs MA, Meijer GC, Huijsing JH (2004) Precision temperature measurement using CMOS substrate PNP transistors. IEEE Sensors J 4(3):294–300CrossRef
265.
Zurück zum Zitat Aita AL, Makinwa KA (2007) Low-power operation of a precision CMOS temperature sensor based on substrate PNPs. In: SENSORS, 2007 IEEE. IEEE, pp 856–859CrossRef Aita AL, Makinwa KA (2007) Low-power operation of a precision CMOS temperature sensor based on substrate PNPs. In: SENSORS, 2007 IEEE. IEEE, pp 856–859CrossRef
266.
Zurück zum Zitat Pertijs MA, Huijsing J (2006) Precision temperature sensors in CMOS technology. Springer Science & Business MediaCrossRef Pertijs MA, Huijsing J (2006) Precision temperature sensors in CMOS technology. Springer Science & Business MediaCrossRef
267.
Zurück zum Zitat Meijer GC (1986) Thermal sensors based on transistors. Sensors Actuators 10(1–2):103–125CrossRef Meijer GC (1986) Thermal sensors based on transistors. Sensors Actuators 10(1–2):103–125CrossRef
268.
Zurück zum Zitat Zhao W, Pan R, Ha Y, Yang Z (2014) A 0.4 V 280-nW frequency reference-less nearly all-digital hybrid domain temperature sensor. In: 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, pp 301–304CrossRef Zhao W, Pan R, Ha Y, Yang Z (2014) A 0.4 V 280-nW frequency reference-less nearly all-digital hybrid domain temperature sensor. In: 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, pp 301–304CrossRef
269.
Zurück zum Zitat Azcona C, Calvo B, Medrano N, Celma S (2015) 1.2 V–0.18μm CMOS temperature sensors with quasi-digital output for portable systems. IEEE Trans Instrum Meas 64(9):2565–2573CrossRef Azcona C, Calvo B, Medrano N, Celma S (2015) 1.2 V–0.18μm CMOS temperature sensors with quasi-digital output for portable systems. IEEE Trans Instrum Meas 64(9):2565–2573CrossRef
270.
Zurück zum Zitat Bashir M, Sreehari Rao P (2019) A low power, miniature temperature sensor with one-point calibrated accuracy of±0.25 C from− 55 to 125 C in 65 nm CMOS process. Analog Integr Circ Sig Process 99(2):311–323CrossRef Bashir M, Sreehari Rao P (2019) A low power, miniature temperature sensor with one-point calibrated accuracy of±0.25 C from− 55 to 125 C in 65 nm CMOS process. Analog Integr Circ Sig Process 99(2):311–323CrossRef
271.
Zurück zum Zitat Someya T, Islam AM, Sakurai T, Takamiya M (2019) An 11-nW CMOS temperature-to-digital converter utilizing sub-threshold current at sub-thermal drain voltage. IEEE J Solid State Circuits 54(3):613–622CrossRef Someya T, Islam AM, Sakurai T, Takamiya M (2019) An 11-nW CMOS temperature-to-digital converter utilizing sub-threshold current at sub-thermal drain voltage. IEEE J Solid State Circuits 54(3):613–622CrossRef
272.
Zurück zum Zitat Krishna R, Mal AK, Mahapatra R (2020) Time-domain smart temperature sensor using current starved inverters and switched ring oscillator-based time-to-digital converter. Circuits, Syst Signal Process 39(4):1751–1769CrossRef Krishna R, Mal AK, Mahapatra R (2020) Time-domain smart temperature sensor using current starved inverters and switched ring oscillator-based time-to-digital converter. Circuits, Syst Signal Process 39(4):1751–1769CrossRef
273.
Zurück zum Zitat Moisello E, Ippolito CM, Bruno G, Malcovati P, Bonizzoni E (2023) A MOS-based temperature sensor with inherent inaccuracy reduction enabled by time-domain operation. IEEE Trans Instrum Meas Moisello E, Ippolito CM, Bruno G, Malcovati P, Bonizzoni E (2023) A MOS-based temperature sensor with inherent inaccuracy reduction enabled by time-domain operation. IEEE Trans Instrum Meas
274.
Zurück zum Zitat Wang A, Calhoun BH, Chandrakasan AP (2006) Sub-threshold design for ultra low-power systems. Springer Wang A, Calhoun BH, Chandrakasan AP (2006) Sub-threshold design for ultra low-power systems. Springer
275.
Zurück zum Zitat Touloukian Y, Powell R, Ho C, Nicolaou M (1974) Thermophysical properties of matter-the TPRC data series. Volume 10. Thermal diffusivity. DTIC Document Touloukian Y, Powell R, Ho C, Nicolaou M (1974) Thermophysical properties of matter-the TPRC data series. Volume 10. Thermal diffusivity. DTIC Document
276.
Zurück zum Zitat Makinwa KA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5°C from (3σ) from −40°C to 105°C. IEEE J Solid State Circuits 41(12):2992–2997CrossRef Makinwa KA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5°C from (3σ) from −40°C to 105°C. IEEE J Solid State Circuits 41(12):2992–2997CrossRef
277.
Zurück zum Zitat Kashmiri S, Makinwa K (2009) Measuring the thermal diffusivity of CMOS chips. In: SENSORS, 2009 IEEE. IEEE, pp 45–48CrossRef Kashmiri S, Makinwa K (2009) Measuring the thermal diffusivity of CMOS chips. In: SENSORS, 2009 IEEE. IEEE, pp 45–48CrossRef
278.
Zurück zum Zitat Makinwa KA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5°C (3σ) from −40°C to 105°C. IEEE J Solid State Circuits 41(12):2992–2997CrossRef Makinwa KA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5°C (3σ) from −40°C to 105°C. IEEE J Solid State Circuits 41(12):2992–2997CrossRef
279.
Zurück zum Zitat van Vroonhoven CP, Makinwa KA (2008) A CMOS Temperature-to-Digital Converter with an Inaccuracy of±0.5°C (3σ) from-55 to 125°C. In: 2008 IEEE international solid-state circuits conference-digest of technical papers. IEEE, pp 576–637CrossRef van Vroonhoven CP, Makinwa KA (2008) A CMOS Temperature-to-Digital Converter with an Inaccuracy of±0.5°C (3σ) from-55 to 125°C. In: 2008 IEEE international solid-state circuits conference-digest of technical papers. IEEE, pp 576–637CrossRef
280.
Zurück zum Zitat Pan S, Makinwa KA (2018) Energy-efficient high-resolution resistor-based temperature sensors. In: Hybrid ADCs, smart sensors for the IoT, and sub-1V & advanced node analog circuit design: Advances in analog circuit design 2017, pp 183–200CrossRef Pan S, Makinwa KA (2018) Energy-efficient high-resolution resistor-based temperature sensors. In: Hybrid ADCs, smart sensors for the IoT, and sub-1V & advanced node analog circuit design: Advances in analog circuit design 2017, pp 183–200CrossRef
281.
Zurück zum Zitat Pan S, Jiang H, Makinwa KA (2017) A CMOS temperature sensor with a 49fJK 2 resolution FoM. In: 2017 Symposium on VLSI Circuits. IEEE, pp C82–C83CrossRef Pan S, Jiang H, Makinwa KA (2017) A CMOS temperature sensor with a 49fJK 2 resolution FoM. In: 2017 Symposium on VLSI Circuits. IEEE, pp C82–C83CrossRef
282.
Zurück zum Zitat Pan S, Makinwa KA (2018) A 0.25 mm 2-resistor-based temperature sensor with an inaccuracy of 0.12° C (3 σ) from− 55° C to 125° C. IEEE J Solid State Circuits 53(12):3347–3355CrossRef Pan S, Makinwa KA (2018) A 0.25 mm 2-resistor-based temperature sensor with an inaccuracy of 0.12° C (3 σ) from− 55° C to 125° C. IEEE J Solid State Circuits 53(12):3347–3355CrossRef
283.
Zurück zum Zitat Park H, Kim J (2018) A 0.8-V resistor-based temperature sensor in 65-nm CMOS with supply sensitivity of 0.28 C/V. IEEE J Solid State Circuits 53(3):906–912CrossRef Park H, Kim J (2018) A 0.8-V resistor-based temperature sensor in 65-nm CMOS with supply sensitivity of 0.28 C/V. IEEE J Solid State Circuits 53(3):906–912CrossRef
284.
Zurück zum Zitat Xin H, Andraud M, Baltus P, Cantatore E, Harpe P (2018) A 174 pW–488.3 nW 1 S/s–100 kS/s all-dynamic resistive temperature sensor with speed/resolution/resistance adaptability. IEEE Solid-State Circuits Letters 1(3):70–73CrossRef Xin H, Andraud M, Baltus P, Cantatore E, Harpe P (2018) A 174 pW–488.3 nW 1 S/s–100 kS/s all-dynamic resistive temperature sensor with speed/resolution/resistance adaptability. IEEE Solid-State Circuits Letters 1(3):70–73CrossRef
285.
Zurück zum Zitat Pan S, Makinwa KA (2019) 10.4 A Wheatstone Bridge Temperature Sensor with a Resolution FoM of 20fJ. K 2. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 186–188CrossRef Pan S, Makinwa KA (2019) 10.4 A Wheatstone Bridge Temperature Sensor with a Resolution FoM of 20fJ. K 2. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 186–188CrossRef
286.
Zurück zum Zitat Jiang H, Huang C-C, Chan MR, Hall DA (2020) A 2-in-1 temperature and humidity sensor with a single FLL wheatstone-bridge front-end. IEEE J Solid State Circuits 55(8):2174–2185CrossRef Jiang H, Huang C-C, Chan MR, Hall DA (2020) A 2-in-1 temperature and humidity sensor with a single FLL wheatstone-bridge front-end. IEEE J Solid State Circuits 55(8):2174–2185CrossRef
287.
Zurück zum Zitat Pan S, Makinwa KA (2020) A 10 fJ·K 2 Wheatstone bridge temperature sensor with a tail-resistor-linearized OTA. IEEE J Solid State Circuits 56(2):501–510CrossRef Pan S, Makinwa KA (2020) A 10 fJ·K 2 Wheatstone bridge temperature sensor with a tail-resistor-linearized OTA. IEEE J Solid State Circuits 56(2):501–510CrossRef
288.
Zurück zum Zitat Pan S, Makinwa KA (2020) A 6.6-μW wheatstone-bridge temperature sensor for biomedical applications. IEEE Solid-State Circuits Letters 3:334–337CrossRef Pan S, Makinwa KA (2020) A 6.6-μW wheatstone-bridge temperature sensor for biomedical applications. IEEE Solid-State Circuits Letters 3:334–337CrossRef
289.
Zurück zum Zitat Shahmohammadi M, Souri K, Makinwa KA (2013) A resistor-based temperature sensor for MEMS frequency references. In: 2013 Proceedings of the ESSCIRC (ESSCIRC). IEEE, pp 225–228CrossRef Shahmohammadi M, Souri K, Makinwa KA (2013) A resistor-based temperature sensor for MEMS frequency references. In: 2013 Proceedings of the ESSCIRC (ESSCIRC). IEEE, pp 225–228CrossRef
290.
Zurück zum Zitat Park P, Ruffieux D, Makinwa KA (2015) A thermistor-based temperature sensor for a real-time clock with ± 2 ppm frequency stability. IEEE J Solid State Circuits 50(7):1571–1580CrossRef Park P, Ruffieux D, Makinwa KA (2015) A thermistor-based temperature sensor for a real-time clock with ± 2 ppm frequency stability. IEEE J Solid State Circuits 50(7):1571–1580CrossRef
291.
Zurück zum Zitat Weng C-H, Wu C-K, Lin T-H (2015) A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65 pJ °C2. IEEE J Solid State Circuits 50(11):2491–2500CrossRef Weng C-H, Wu C-K, Lin T-H (2015) A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65 pJ °C2. IEEE J Solid State Circuits 50(11):2491–2500CrossRef
292.
Zurück zum Zitat Pan S, Luo Y, Shalmany SH, Makinwa KA (2017) A resistor-based temperature sensor with a 0.13 pJ·K2 resolution FoM. IEEE J Solid State Circuits 53(1):164–173CrossRef Pan S, Luo Y, Shalmany SH, Makinwa KA (2017) A resistor-based temperature sensor with a 0.13 pJ·K2 resolution FoM. IEEE J Solid State Circuits 53(1):164–173CrossRef
293.
Zurück zum Zitat Angevare J, Makinwa KA (2018) A 6800-μm 2 resistor-based temperature sensor in 180-nm CMOS. In: 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, pp 43–46CrossRef Angevare J, Makinwa KA (2018) A 6800-μm 2 resistor-based temperature sensor in 180-nm CMOS. In: 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, pp 43–46CrossRef
294.
Zurück zum Zitat Pan S, Gürleyük Ç, Pimenta MF, Makinwa KA (2019) 10.3 A 0.12 mm 2 Wien-bridge temperature sensor with 0.1° C (3σ) inaccuracy from −40° C to 180° C. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 184–186CrossRef Pan S, Gürleyük Ç, Pimenta MF, Makinwa KA (2019) 10.3 A 0.12 mm 2 Wien-bridge temperature sensor with 0.1° C (3σ) inaccuracy from −40° C to 180° C. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 184–186CrossRef
295.
Zurück zum Zitat Choi W et al (2018) A compact resistor-based CMOS temperature sensor with an inaccuracy of 0.12° C (3σ) and a resolution FoM of 0.43 pJ·K 2 in 65-nm CMOS. IEEE J Solid State Circuits 53(12):3356–3367CrossRef Choi W et al (2018) A compact resistor-based CMOS temperature sensor with an inaccuracy of 0.12° C (3σ) and a resolution FoM of 0.43 pJ·K 2 in 65-nm CMOS. IEEE J Solid State Circuits 53(12):3356–3367CrossRef
296.
Zurück zum Zitat Lee Y, Choi W, Kim T, Song S, Makinwa KA, Chae Y (2019) A 5800-μm 2 resistor-based temperature sensor with a one-point trimmed inaccuracy of±1.2 C (3σ) from− 50 C to 105 C in 65-nm CMOS. In: ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC). IEEE, pp 68–71CrossRef Lee Y, Choi W, Kim T, Song S, Makinwa KA, Chae Y (2019) A 5800-μm 2 resistor-based temperature sensor with a one-point trimmed inaccuracy of±1.2 C (3σ) from− 50 C to 105 C in 65-nm CMOS. In: ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC). IEEE, pp 68–71CrossRef
297.
Zurück zum Zitat Khashaba A, Zhu J, Elmallah A, Ahmed M, Hanumolu PK (2020) 3.2 A 0.0088 mm 2 Resistor-Based Temperature Sensor Achieving 92fJ·K 2 FoM in 65nm CMOS. In: 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 60–62CrossRef Khashaba A, Zhu J, Elmallah A, Ahmed M, Hanumolu PK (2020) 3.2 A 0.0088 mm 2 Resistor-Based Temperature Sensor Achieving 92fJ·K 2 FoM in 65nm CMOS. In: 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 60–62CrossRef
298.
Zurück zum Zitat Angevare JA, Chae Y, Makinwa KA (2021) 5.3 a highly digital 2210μm 2 resistor-based temperature sensor with a 1-point trimmed inaccuracy of±1.3° C (3 σ) from-55° C to 125° C in 65nm CMOS. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol 64. IEEE, pp 76–78CrossRef Angevare JA, Chae Y, Makinwa KA (2021) 5.3 a highly digital 2210μm 2 resistor-based temperature sensor with a 1-point trimmed inaccuracy of±1.3° C (3 σ) from-55° C to 125° C in 65nm CMOS. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol 64. IEEE, pp 76–78CrossRef
299.
Zurück zum Zitat Lee Y, Kim T, Chae Y (2023) A 0.9 V 6,400-μm2 resistor-based temperature sensor with a one-point trimmed 3σ inaccuracy of 10.64° C from. 50 to 125° C. IEEE Trans Circuits Syst II: Express Briefs Lee Y, Kim T, Chae Y (2023) A 0.9 V 6,400-μm2 resistor-based temperature sensor with a one-point trimmed 3σ inaccuracy of 10.64° C from. 50 to 125° C. IEEE Trans Circuits Syst II: Express Briefs
300.
Zurück zum Zitat Pan S, Makinwa KA (2022) Resistor-based temperature sensors in CMOS technology. SpringerCrossRef Pan S, Makinwa KA (2022) Resistor-based temperature sensors in CMOS technology. SpringerCrossRef
301.
Zurück zum Zitat Sze SM (1994) Semicondutor sensors. In: Semicondutor sensors, pp 550–550 Sze SM (1994) Semicondutor sensors. In: Semicondutor sensors, pp 550–550
302.
Zurück zum Zitat Middelhoek S et al (1995) Silicon sensors. Meas Sci Technol 6(12):1641CrossRef Middelhoek S et al (1995) Silicon sensors. Meas Sci Technol 6(12):1641CrossRef
303.
Zurück zum Zitat Akin T (2005) CMOS-based thermal sensors. CMOS—MEMS, pp 479–512 Akin T (2005) CMOS-based thermal sensors. CMOS—MEMS, pp 479–512
304.
Zurück zum Zitat Van Herwaarden A, Sarro P (1986) Thermal sensors based on the Seebeck effect. Sensors Actuators 10(3–4):321–346CrossRef Van Herwaarden A, Sarro P (1986) Thermal sensors based on the Seebeck effect. Sensors Actuators 10(3–4):321–346CrossRef
305.
Zurück zum Zitat Hierlemann A, Baltes H (2003) CMOS-based chemical microsensors. Analyst 128(1):15–28CrossRef Hierlemann A, Baltes H (2003) CMOS-based chemical microsensors. Analyst 128(1):15–28CrossRef
306.
Zurück zum Zitat Moisello E, Vaiana M, Castagna ME, Bruno G, Bonizzoni E, Malcovati P (2019) A chopper interface circuit for thermopile-based thermal sensors. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–5 Moisello E, Vaiana M, Castagna ME, Bruno G, Bonizzoni E, Malcovati P (2019) A chopper interface circuit for thermopile-based thermal sensors. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–5
Metadaten
Titel
Sensing Elements
verfasst von
Ebrahim Ghafar-Zadeh
Saghi Forouhi
Tayebeh Azadmousavi
Copyright-Jahr
2025
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0099-4_3