Skip to main content

2024 | OriginalPaper | Buchkapitel

Sensitivity Analysis of Infrared Radiation from Tailless Aircraft Nozzle Caused by Incoming Conditions

verfasst von : Chengjun He, Bowen Shu, Jiangtao Huang, Cheng Chen, Xian Chen, Haibo Zheng

Erschienen in: 2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exhaust system is the most important infrared radiation source of aircraft. The special geometric structure of serpentine nozzle can partially or completely block the internal high-temperature components. It can enhance the mixing between high-temperature gas and external low-temperature atmosphere with two-dimensional nozzle, and can effectively reduce the infrared radiation intensity of aircraft. The distribution characteristics of nozzle wall temperature, gas temperature and pressure and gas component concentration under different flight parameters are analyzed. Based on the discrete transfer method, the infrared radiation characteristics of nozzle are evaluated, and the influence of incoming flow parameters on the infrared radiation characteristics of nozzle is obtained. Taking flight altitude H, flight Mach number Ma, nozzle mainstream total pressure P0 and nozzle mainstream total temperature T0 as uncertain input parameters, samples are constructed by Latin Hypercube Sampling (LHS), and the infrared radiation response values corresponding to each sample point are calculated. The sensitivity analysis of infrared radiation signals is carried out by Non-intrusive Polynomial Chaos (NIPC) method, and the influence degree of single variable and multiple variables on the infrared radiation characteristics of nozzle is quantified. Infrared radiation intensity is the most sensitive to the total temperature of the nozzle. The Sobol index of gas radiation, wall radiation and total radiation and its total temperature reaches above 0.7, which is dominant. The contribution of Mach number to infrared radiation intensity can be ignored basically. Infrared radiation intensity is also sensitive to flight altitude. The gas radiation is the most sensitive to the flight altitude, but the total radiation is the most sensitive to the temperature, and the infrared radiation intensity mainly comes from the wall radiation in the direction of 90 degrees of horizontal detection plane and 90 degrees of vertical detection plane.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rao, G.A., Mahulikar, S.P.: Aircraft powerplant and plume infrared signature modeling and analysis. In: AIAA 2005–221 (2005) Rao, G.A., Mahulikar, S.P.: Aircraft powerplant and plume infrared signature modeling and analysis. In: AIAA 2005–221 (2005)
2.
Zurück zum Zitat Rao, G.A., Mahulikar, S.P.: Integrated review of stealth technology and its role in airpower. Aeronaut. J. 106, 629–641 (2002)CrossRef Rao, G.A., Mahulikar, S.P.: Integrated review of stealth technology and its role in airpower. Aeronaut. J. 106, 629–641 (2002)CrossRef
3.
Zurück zum Zitat Rao, G.A., Mahulikar, S.P.: Effect of atmospheric transmission and radiance on aircraft infrared signatures. J. Aircr. 42(4), 1046–1054 (2005)CrossRef Rao, G.A., Mahulikar, S.P.: Effect of atmospheric transmission and radiance on aircraft infrared signatures. J. Aircr. 42(4), 1046–1054 (2005)CrossRef
4.
Zurück zum Zitat Zhao, H., Gao, Z., Xu, F., et al.: Review of robust aerodynamic design optimization for air vechicles. Arch. Computat. Methods Eng. 26(3), 685–732 (2019)CrossRef Zhao, H., Gao, Z., Xu, F., et al.: Review of robust aerodynamic design optimization for air vechicles. Arch. Computat. Methods Eng. 26(3), 685–732 (2019)CrossRef
5.
Zurück zum Zitat Zhao, H., Gao, Z., Gao, Y., et al.: Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerosp. Sci. Technol. 68, 530–542 (2017)CrossRef Zhao, H., Gao, Z., Gao, Y., et al.: Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerosp. Sci. Technol. 68, 530–542 (2017)CrossRef
6.
Zurück zum Zitat Rivera, Y., Muoz-Cobo, J.L., Berna, C., et al.: CFD simulation plus uncertainty quantification of the mixing of two fluid with different density for the Cold-Leg mixing benchmark. Nucl. Eng. Des. 383, 111449 (2021)CrossRef Rivera, Y., Muoz-Cobo, J.L., Berna, C., et al.: CFD simulation plus uncertainty quantification of the mixing of two fluid with different density for the Cold-Leg mixing benchmark. Nucl. Eng. Des. 383, 111449 (2021)CrossRef
7.
Zurück zum Zitat Xia, L., Yuan, S., Zou, Z.J., et al.: Uncertainty quantification of hydrodynamic forces on the DTC model in shallow water waves using CFD and nonintrusive polynomial chaos method. Ocean Eng. 198, 106920 (2020)CrossRef Xia, L., Yuan, S., Zou, Z.J., et al.: Uncertainty quantification of hydrodynamic forces on the DTC model in shallow water waves using CFD and nonintrusive polynomial chaos method. Ocean Eng. 198, 106920 (2020)CrossRef
8.
Zurück zum Zitat Sun, Y.Q., Dong, S.K., Niu, Q.L., et al.: NIPC-based, uncertainty analysis of infrared radiation from rocket exhaust plumes caused by nozzle exit conditions. Infrared Phys. Technol. 108, 103376 (2020)CrossRef Sun, Y.Q., Dong, S.K., Niu, Q.L., et al.: NIPC-based, uncertainty analysis of infrared radiation from rocket exhaust plumes caused by nozzle exit conditions. Infrared Phys. Technol. 108, 103376 (2020)CrossRef
9.
Zurück zum Zitat Hosder, S., Walters, R.W., Balch, M.: Efficient sampling for non-intrusive polynomial chaos applications with multiple input uncertain variables. In: AIAA 2007-1939 (2007) Hosder, S., Walters, R.W., Balch, M.: Efficient sampling for non-intrusive polynomial chaos applications with multiple input uncertain variables. In: AIAA 2007-1939 (2007)
10.
Zurück zum Zitat Shu, B.W., Huang, J.T., Gao, Z.H., et al.: Sensitivity analysis of vector performance of two-dimensional shock vector control nozzle. Acta Aeronautica et Astronautica Sinica 44(14), 127831–127831 (2023). (in Chinese) Shu, B.W., Huang, J.T., Gao, Z.H., et al.: Sensitivity analysis of vector performance of two-dimensional shock vector control nozzle. Acta Aeronautica et Astronautica Sinica 44(14), 127831–127831 (2023). (in Chinese)
11.
Zurück zum Zitat Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)MathSciNetCrossRef Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)MathSciNetCrossRef
12.
Zurück zum Zitat Sobol, I.M., Kucherenko, S.: Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 71(10), 3009–3017 (2016)MathSciNet Sobol, I.M., Kucherenko, S.: Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 71(10), 3009–3017 (2016)MathSciNet
Metadaten
Titel
Sensitivity Analysis of Infrared Radiation from Tailless Aircraft Nozzle Caused by Incoming Conditions
verfasst von
Chengjun He
Bowen Shu
Jiangtao Huang
Cheng Chen
Xian Chen
Haibo Zheng
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4010-9_99

    Premium Partner