Skip to main content
Erschienen in: Wireless Networks 8/2019

03.07.2019

Sensor deployment in wireless sensor networks with linear topology using virtual node concept

verfasst von: Rodrigue K. Domga, Razvan Stanica, Maurice Tchuente, Fabrice Valois

Erschienen in: Wireless Networks | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In a multi-hop wireless sensor network with a convergecast communication model, there is a high traffic accumulation in the neighborhood of the sink. This area constitutes the bottleneck of the network since the sensors deployed withing it rapidly exhaust their batteries. In this paper, we consider the problem of sensors deployment for lifetime maximization in a linear wireless sensor network. Existing approaches express the deployment recommendations in terms of distance between consecutive sensors. Solutions imposing such constraints on the deployment may be costly and difficult to manage. In this paper, we propose a new approach where the network is formed of virtual nodes, each associated to a certain geographical area. An analytical model of the network traffic per virtual node is proposed and a greedy algorithm to calculate the number of sensors that should form each virtual node is presented. Performance evaluation shows that the greedy deployment can improve the network lifetime by up to 40%, when compared to the uniform deployment. Moreover, the proposed approach outperforms the related work when complemented by a scheduling algorithm which reduces the messages overhearing. It is also shown that the lifetime of the network can be significantly improved if the battery capacity of each sensor is dimensioned taking into account the traffic it generates or relays.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jawhar, I., Mohamed, N., & Agrawal, D. P. (2011). Linear wireless sensor networks: Classification and applications. Journal of Network and Computer Applications, 34(5), 1671–1682.CrossRef Jawhar, I., Mohamed, N., & Agrawal, D. P. (2011). Linear wireless sensor networks: Classification and applications. Journal of Network and Computer Applications, 34(5), 1671–1682.CrossRef
2.
Zurück zum Zitat Stajano, F., Hoult, N., Wassell, I., Bennett, P., Middleton, C., & Soga, K. (2010). Smart bridges, smart tunnels: Transforming wireless sensor networks from research prototypes into robust engineering infrastructure. Ad Hoc Networks, 8(8), 872–888.CrossRef Stajano, F., Hoult, N., Wassell, I., Bennett, P., Middleton, C., & Soga, K. (2010). Smart bridges, smart tunnels: Transforming wireless sensor networks from research prototypes into robust engineering infrastructure. Ad Hoc Networks, 8(8), 872–888.CrossRef
3.
Zurück zum Zitat Fisher, W., Camp, T., & Krzhizhanovskaya, V. (2016). Crack detection in earth dam and levee passive seismic data using support vector machines. In Proceedings of ICCS, San Diego, CA, USA. Fisher, W., Camp, T., & Krzhizhanovskaya, V. (2016). Crack detection in earth dam and levee passive seismic data using support vector machines. In Proceedings of ICCS, San Diego, CA, USA.
4.
Zurück zum Zitat Komguem, R. D., Stanica, R., Tchuente, M., & Valois, F. (2014). WARIM: wireless sensor networks architecture for a reliable intersection monitoring. In Proceedings of IEEE ITSC 2014, Quingdao, China. Komguem, R. D., Stanica, R., Tchuente, M., & Valois, F. (2014). WARIM: wireless sensor networks architecture for a reliable intersection monitoring. In Proceedings of IEEE ITSC 2014, Quingdao, China.
5.
Zurück zum Zitat Sun, Z., Wang, P., Vuran, M., Al-Rodhaan, M., Al-Dhelaan, A., & Akyildiz, I. (2011). BorderSense: Border patrol through advances wireless sensor networks. Ad Hoc Networks, 9(3), 468–477.CrossRef Sun, Z., Wang, P., Vuran, M., Al-Rodhaan, M., Al-Dhelaan, A., & Akyildiz, I. (2011). BorderSense: Border patrol through advances wireless sensor networks. Ad Hoc Networks, 9(3), 468–477.CrossRef
6.
Zurück zum Zitat Perillo, M., Cheng, Z., & Heinzelman, W. (2004). On the problem of unbalanced load distribution in wireless sensor networks. In IEEE global telecommunications conference workshops, Dallas, USA (pp. 74–79). Perillo, M., Cheng, Z., & Heinzelman, W. (2004). On the problem of unbalanced load distribution in wireless sensor networks. In IEEE global telecommunications conference workshops, Dallas, USA (pp. 74–79).
7.
Zurück zum Zitat Noori, M., & Ardakani, M. (2008). Characterizing the traffic distribution in linear wireless sensor networks. IEEE Communications Letters, 12(8), 554–556.CrossRef Noori, M., & Ardakani, M. (2008). Characterizing the traffic distribution in linear wireless sensor networks. IEEE Communications Letters, 12(8), 554–556.CrossRef
8.
Zurück zum Zitat Guo, Y., Kong, F., Zhu, D., Tosun, A. Ş., & Deng, Q. (2010). Sensor placement for lifetime maximization in monitoring oil pipelines. In Proceedings of the 1st ACM/IEEE international conference on cyber-physical systems (pp. 61–68). Guo, Y., Kong, F., Zhu, D., Tosun, A. Ş., & Deng, Q. (2010). Sensor placement for lifetime maximization in monitoring oil pipelines. In Proceedings of the 1st ACM/IEEE international conference on cyber-physical systems (pp. 61–68).
9.
Zurück zum Zitat Olariu, S., & Stojmenovic, I. (2006). Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. INFOCOM, 2006, 1–12. Olariu, S., & Stojmenovic, I. (2006). Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. INFOCOM, 2006, 1–12.
10.
Zurück zum Zitat Ok, C., Thadakamalla, H., Raghavan, U., Kumara, S., Kim, S. G., Zhang, X., & Bukkapatnam, S. (2007). Optimal transmission power in self-sustainable sensor networks for pipeline monitoring. In IEEE international conference on automation science and engineering (CASE) (pp. 591–596). Ok, C., Thadakamalla, H., Raghavan, U., Kumara, S., Kim, S. G., Zhang, X., & Bukkapatnam, S. (2007). Optimal transmission power in self-sustainable sensor networks for pipeline monitoring. In IEEE international conference on automation science and engineering (CASE) (pp. 591–596).
11.
Zurück zum Zitat Liu, X., & Mohapatra, P. (2007). On the deployment of wireless data back-haul networks. IEEE Transactions on Wireless Communications, 6(4), 1426–1435.CrossRef Liu, X., & Mohapatra, P. (2007). On the deployment of wireless data back-haul networks. IEEE Transactions on Wireless Communications, 6(4), 1426–1435.CrossRef
12.
Zurück zum Zitat Aberer, K., Hauswirth, M., & Salehi, A. (2006). A middleware for fast and flexible sensor network deployment. In Proceedings of the 32nd international conference on Very large data bases. Aberer, K., Hauswirth, M., & Salehi, A. (2006). A middleware for fast and flexible sensor network deployment. In Proceedings of the 32nd international conference on Very large data bases.
13.
Zurück zum Zitat Raveendranathan, N., Galzarano, S., Loseu, V., Gravina, R., Giannantonio, R., Sgroi, M., et al. (2012). From modeling to implementation of virtual sensors in body sensor networks. IEEE Sensors Journal, 12(3), 583–593.CrossRef Raveendranathan, N., Galzarano, S., Loseu, V., Gravina, R., Giannantonio, R., Sgroi, M., et al. (2012). From modeling to implementation of virtual sensors in body sensor networks. IEEE Sensors Journal, 12(3), 583–593.CrossRef
14.
Zurück zum Zitat Madria, S., Kumar, V., & Dalvi, R. (2014). Sensor cloud: A cloud of virtual sensors. In IEEE Software (Vol. 31, No. 2, pp. 70–77). Madria, S., Kumar, V., & Dalvi, R. (2014). Sensor cloud: A cloud of virtual sensors. In IEEE Software (Vol. 31, No. 2, pp. 70–77).
15.
Zurück zum Zitat Rappaport, T. S. (1996). Wireless communications: Principles and practise. Upper Saddle River: Prentice Hall. Rappaport, T. S. (1996). Wireless communications: Principles and practise. Upper Saddle River: Prentice Hall.
16.
Zurück zum Zitat Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(2), 828–854.CrossRef Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(2), 828–854.CrossRef
17.
Zurück zum Zitat Vicaire, P., He, T., Cao, Q., Yan, T., Zhou, G., Gu, L., et al. (2009). Achieving long-term surveillance in vigilnet. ACM Transaction Sensor Networks, 5(1), 1–39.CrossRef Vicaire, P., He, T., Cao, Q., Yan, T., Zhou, G., Gu, L., et al. (2009). Achieving long-term surveillance in vigilnet. ACM Transaction Sensor Networks, 5(1), 1–39.CrossRef
18.
Zurück zum Zitat Sevgi, C., & Koçyiğit, A. (2014). Optimal deployment in randomly deployed heterogeneous WSNs: A connected coverage approach. Journal of Network and Computer Applications, 46, 182–197.CrossRef Sevgi, C., & Koçyiğit, A. (2014). Optimal deployment in randomly deployed heterogeneous WSNs: A connected coverage approach. Journal of Network and Computer Applications, 46, 182–197.CrossRef
19.
Zurück zum Zitat Bhuiyan, M. Z. A., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.CrossRefMathSciNet Bhuiyan, M. Z. A., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.CrossRefMathSciNet
20.
Zurück zum Zitat Parrado-Garcia, F. J., Vales-Alonso, J., & Alcaraz, J. J. (2017). Optimal planning of WSN deployments for in situ lunar surveys. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1866–1879.CrossRef Parrado-Garcia, F. J., Vales-Alonso, J., & Alcaraz, J. J. (2017). Optimal planning of WSN deployments for in situ lunar surveys. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1866–1879.CrossRef
21.
Zurück zum Zitat Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735.CrossRef Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735.CrossRef
22.
Zurück zum Zitat Kulkarni, N., Prasad, N. R., & Prasa, R. (2018). A novel sensor node deployment using low discrepancy sequences for WSN. Wireless Personal Communications, 100(2), 241–254.CrossRef Kulkarni, N., Prasad, N. R., & Prasa, R. (2018). A novel sensor node deployment using low discrepancy sequences for WSN. Wireless Personal Communications, 100(2), 241–254.CrossRef
23.
Zurück zum Zitat Potthuri, S., Shankar, T., & Rajesh, A. (2018). Lifetime improvement in wireless sensor networks using hybrid differential evolution and simulated annealing (DESA). Ain Shams Engineering Journal, 9(4), 655–663.CrossRef Potthuri, S., Shankar, T., & Rajesh, A. (2018). Lifetime improvement in wireless sensor networks using hybrid differential evolution and simulated annealing (DESA). Ain Shams Engineering Journal, 9(4), 655–663.CrossRef
24.
Zurück zum Zitat Domga, K.R., Stanica, R., Tchuente, M., & Valois, F. (2017). Nodes ranking in wireless sensor network with linear topology. In IEEE WD’2017, Porto, Portugal. Domga, K.R., Stanica, R., Tchuente, M., & Valois, F. (2017). Nodes ranking in wireless sensor network with linear topology. In IEEE WD’2017, Porto, Portugal.
25.
Zurück zum Zitat Zahid, A. M., Kamalrulnizam, A. B., Muhammad, A., & Hafiz, M. (2018). An overview of routing techniques for road and pipeline monitoring in linear sensor networks. Wireless Networks, 24(6), 2133–2143.CrossRef Zahid, A. M., Kamalrulnizam, A. B., Muhammad, A., & Hafiz, M. (2018). An overview of routing techniques for road and pipeline monitoring in linear sensor networks. Wireless Networks, 24(6), 2133–2143.CrossRef
26.
Zurück zum Zitat Plancoulaine, S., Bachir, A., & Barthel, D. (2006). WSN node energy dissipation. Technical report, France Telecom R&D, Internal Report. Plancoulaine, S., Bachir, A., & Barthel, D. (2006). WSN node energy dissipation. Technical report, France Telecom R&D, Internal Report.
27.
Zurück zum Zitat Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506.CrossRef Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506.CrossRef
28.
Zurück zum Zitat Zhao, Y., Wu, J., Li, F., & Lu, S. (2012). On maximizing the lifetime of wireless sensor networks using virtual backbone scheduling. IEEE Transactions on Parallel and Distributed Systems, 23(8), 1528–1535.CrossRef Zhao, Y., Wu, J., Li, F., & Lu, S. (2012). On maximizing the lifetime of wireless sensor networks using virtual backbone scheduling. IEEE Transactions on Parallel and Distributed Systems, 23(8), 1528–1535.CrossRef
29.
Zurück zum Zitat Chen, Y., Zhao, Q., Krishnamurthy, V., & Djonin, D. (2007). Transmission scheduling for optimizing sensor network lifetime: A stochastic shortest path approach. IEEE Transactions on Signal Processing, 55(5), 2294–2309.CrossRefMathSciNet Chen, Y., Zhao, Q., Krishnamurthy, V., & Djonin, D. (2007). Transmission scheduling for optimizing sensor network lifetime: A stochastic shortest path approach. IEEE Transactions on Signal Processing, 55(5), 2294–2309.CrossRefMathSciNet
Metadaten
Titel
Sensor deployment in wireless sensor networks with linear topology using virtual node concept
verfasst von
Rodrigue K. Domga
Razvan Stanica
Maurice Tchuente
Fabrice Valois
Publikationsdatum
03.07.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02071-x

Weitere Artikel der Ausgabe 8/2019

Wireless Networks 8/2019 Zur Ausgabe

Neuer Inhalt