Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Sensor Embodiment and Flexible Electronics

verfasst von : P. Kassanos, S. Anastasova, C. M. Chen, Guang-Zhong Yang

Erschienen in: Implantable Sensors and Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sensor embodiment and packaging are particularly important for implantable systems. One key element is the development of flexible electronics. Traditional electronics, based on rigid silicon technologies, is associated with a number of intrinsic disadvantages. The inherent brittleness of inorganic semiconductors and stiffness of Si wafer-based devices represent a major issue when interfaced with tissues. This is because our internal organs are complex and they have innate responses to reject foreign bodies. Furthermore, tissues are soft, and they undergo constant motion and deformation. In this chapter, we will discuss current progress in flexible printed circuit board (FPC/FPCB) technologies and provide a review of new fabrication techniques and materials for making soft devices and interconnects suitable for implantable applications. Issues related to geometrical designs for mechanically resilient flexible devices, hermetic packaging, biocompatibility and encapsulation are addressed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Bozkurt, A. Lal, Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system. Sens. Actuators Phys. 169(1), 89–97 (2011)CrossRef A. Bozkurt, A. Lal, Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system. Sens. Actuators Phys. 169(1), 89–97 (2011)CrossRef
2.
Zurück zum Zitat P. Kassanos, H.M.D. Ip, G.-Z. Yang, A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (2015), pp. 1–6 P. Kassanos, H.M.D. Ip, G.-Z. Yang, A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (2015), pp. 1–6
3.
Zurück zum Zitat C. Kallmayer, E. Simon, Large area sensor integration in textiles, in 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD) (2012), pp. 1–5 C. Kallmayer, E. Simon, Large area sensor integration in textiles, in 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD) (2012), pp. 1–5
4.
Zurück zum Zitat A. Nelson et al., Wearable multi-sensor gesture recognition for paralysis patients, in 2013 IEEE SENSORS (2013), pp. 1–4 A. Nelson et al., Wearable multi-sensor gesture recognition for paralysis patients, in 2013 IEEE SENSORS (2013), pp. 1–4
5.
Zurück zum Zitat R.G. Haahr et al., An electronic patch for wearable health monitoring by reflectance pulse oximetry. IEEE Trans. Biomed. Circuits Syst. 6(1), 45–53 (2012)CrossRef R.G. Haahr et al., An electronic patch for wearable health monitoring by reflectance pulse oximetry. IEEE Trans. Biomed. Circuits Syst. 6(1), 45–53 (2012)CrossRef
6.
Zurück zum Zitat C.M. Chen, R. Kwasnicki, B. Lo, G.-Z. Yang, Wearable tissue oxygenation monitoring sensor and a forearm vascular phantom design for data validation, in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (2014), pp. 64–68 C.M. Chen, R. Kwasnicki, B. Lo, G.-Z. Yang, Wearable tissue oxygenation monitoring sensor and a forearm vascular phantom design for data validation, in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (2014), pp. 64–68
7.
Zurück zum Zitat R. Dekker et al., Living chips and chips for the living, in 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2012), pp. 1–9 R. Dekker et al., Living chips and chips for the living, in 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2012), pp. 1–9
8.
Zurück zum Zitat J. Reeder et al., Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26(29), 4967–4973 (2014)CrossRef J. Reeder et al., Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26(29), 4967–4973 (2014)CrossRef
10.
Zurück zum Zitat L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014) L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014)
11.
Zurück zum Zitat D.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011)CrossRef D.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011)CrossRef
12.
Zurück zum Zitat W.-H. Yeo et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)CrossRef W.-H. Yeo et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)CrossRef
13.
Zurück zum Zitat H. Tao et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. 111(49), 17385–17389 (2014)CrossRef H. Tao et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. 111(49), 17385–17389 (2014)CrossRef
14.
Zurück zum Zitat J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)CrossRef J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)CrossRef
15.
Zurück zum Zitat S.P. Lee et al., Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proc. IEEE 103(4), 682–689 (2015)CrossRef S.P. Lee et al., Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proc. IEEE 103(4), 682–689 (2015)CrossRef
16.
Zurück zum Zitat D.-H. Kim et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10(4), 316–323 (2011)CrossRef D.-H. Kim et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10(4), 316–323 (2011)CrossRef
17.
Zurück zum Zitat T. Yokota et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016)CrossRef T. Yokota et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016)CrossRef
18.
Zurück zum Zitat S.-W. Hwang et al., A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)CrossRef S.-W. Hwang et al., A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)CrossRef
19.
Zurück zum Zitat M.S. Mannoor et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)CrossRef M.S. Mannoor et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)CrossRef
20.
Zurück zum Zitat H. Tao et al., Implantable, multifunctional, bioresorbable optics. Proc. Natl. Acad. Sci. 109(48), 19584–19589 (2012)CrossRef H. Tao et al., Implantable, multifunctional, bioresorbable optics. Proc. Natl. Acad. Sci. 109(48), 19584–19589 (2012)CrossRef
21.
Zurück zum Zitat D.-H. Kim et al., Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. 109(49), 19910–19915 (2012)CrossRef D.-H. Kim et al., Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. 109(49), 19910–19915 (2012)CrossRef
22.
Zurück zum Zitat L. Xu et al., Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27(10), 1731–1737 (2015)CrossRef L. Xu et al., Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27(10), 1731–1737 (2015)CrossRef
23.
Zurück zum Zitat G. Park et al., Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv. Healthc. Mater. 3(4), 515–525 (2014)CrossRef G. Park et al., Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv. Healthc. Mater. 3(4), 515–525 (2014)CrossRef
24.
Zurück zum Zitat M.A. Deeds, P.A. Sandborn, MOEMS chip-level optical fiber interconnect. IEEE Trans. Adv. Packag. 28(4), 612–618 (2005)CrossRef M.A. Deeds, P.A. Sandborn, MOEMS chip-level optical fiber interconnect. IEEE Trans. Adv. Packag. 28(4), 612–618 (2005)CrossRef
25.
Zurück zum Zitat M. Lapisa, G. Stemme, F. Niklaus, Wafer-Level Heterogeneous Integration for MOEMS, MEMS, and NEMS. IEEE J. Sel. Top. Quantum Electron. 17(3), 629–644 (2011)CrossRef M. Lapisa, G. Stemme, F. Niklaus, Wafer-Level Heterogeneous Integration for MOEMS, MEMS, and NEMS. IEEE J. Sel. Top. Quantum Electron. 17(3), 629–644 (2011)CrossRef
26.
Zurück zum Zitat R. Özgün, B.J. Jung, B.M. Dhar, H.E. Katz, A.G. Andreou, Silicon-on-insulator (SOI) integration for organic field effect transistor (OFET) based circuits, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011), pp. 2253–2256 R. Özgün, B.J. Jung, B.M. Dhar, H.E. Katz, A.G. Andreou, Silicon-on-insulator (SOI) integration for organic field effect transistor (OFET) based circuits, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011), pp. 2253–2256
27.
Zurück zum Zitat M. Luo, A.W. Martinez, C. Song, F. Herrault, M.G. Allen, A Microfabricated wireless RF pressure sensor made completely of biodegradable materials. J. Microelectromechanical Syst. 23(1), 4–13 (2014)CrossRef M. Luo, A.W. Martinez, C. Song, F. Herrault, M.G. Allen, A Microfabricated wireless RF pressure sensor made completely of biodegradable materials. J. Microelectromechanical Syst. 23(1), 4–13 (2014)CrossRef
28.
Zurück zum Zitat T. Adrega, S.P. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J. Micromechanics Microengineering 20(5), 055025 (2010)CrossRef T. Adrega, S.P. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J. Micromechanics Microengineering 20(5), 055025 (2010)CrossRef
29.
Zurück zum Zitat X. Hu, P. Krull, B. de Graff, K. Dowling, J.A. Rogers, W.J. Arora, Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 23(26), 2933–2936 (2011)CrossRef X. Hu, P. Krull, B. de Graff, K. Dowling, J.A. Rogers, W.J. Arora, Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 23(26), 2933–2936 (2011)CrossRef
30.
Zurück zum Zitat Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1(3), 201–207 (2006)CrossRef Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1(3), 201–207 (2006)CrossRef
31.
Zurück zum Zitat M.J. Allen et al., Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)CrossRef M.J. Allen et al., Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)CrossRef
32.
Zurück zum Zitat X. Liang, Z. Fu, S.Y. Chou, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRef X. Liang, Z. Fu, S.Y. Chou, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRef
33.
Zurück zum Zitat A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284–5318 (2012)CrossRef A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284–5318 (2012)CrossRef
34.
Zurück zum Zitat C. Kim, P.E. Burrows, S.R. Forrest, Micropatterning of organic electronic devices by cold-welding. Science 288(5467), 831–833 (2000)CrossRef C. Kim, P.E. Burrows, S.R. Forrest, Micropatterning of organic electronic devices by cold-welding. Science 288(5467), 831–833 (2000)CrossRef
35.
Zurück zum Zitat C. Kim, S.R. Forrest, Fabrication of organic light-emitting devices by low-pressure cold welding. Adv. Mater. 15(6), 541–545 (2003) C. Kim, S.R. Forrest, Fabrication of organic light-emitting devices by low-pressure cold welding. Adv. Mater. 15(6), 541–545 (2003)
36.
Zurück zum Zitat S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004) S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)
37.
Zurück zum Zitat C. Kim, M. Shtein, S.R. Forrest, Nanolithography based on patterned metal transfer and its application to organic electronic devices. Appl. Phys. Lett. 80(21), 4051–4053 (2002)CrossRef C. Kim, M. Shtein, S.R. Forrest, Nanolithography based on patterned metal transfer and its application to organic electronic devices. Appl. Phys. Lett. 80(21), 4051–4053 (2002)CrossRef
38.
Zurück zum Zitat D.R. Hines, V.W. Ballarotto, E.D. Williams, Y. Shao, S.A. Solin, Transfer printing methods for the fabrication of flexible organic electronics. J. Appl. Phys. 101(2), 024503 (2007)CrossRef D.R. Hines, V.W. Ballarotto, E.D. Williams, Y. Shao, S.A. Solin, Transfer printing methods for the fabrication of flexible organic electronics. J. Appl. Phys. 101(2), 024503 (2007)CrossRef
39.
Zurück zum Zitat J. Zaumseil et al., Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3(9), 1223–1227 (2003)CrossRef J. Zaumseil et al., Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3(9), 1223–1227 (2003)CrossRef
40.
Zurück zum Zitat J.-H. Ahn et al., Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90(21), 213501 (2007)CrossRef J.-H. Ahn et al., Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90(21), 213501 (2007)CrossRef
41.
Zurück zum Zitat D.-H. Kim et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. 105(48), 18675–18680 (2008)CrossRef D.-H. Kim et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. 105(48), 18675–18680 (2008)CrossRef
42.
Zurück zum Zitat A. Perl, D.N. Reinhoudt, J. Huskens, Microcontact printing: limitations and achievements. Adv. Mater. 21(22), 2257–2268 (2009)CrossRef A. Perl, D.N. Reinhoudt, J. Huskens, Microcontact printing: limitations and achievements. Adv. Mater. 21(22), 2257–2268 (2009)CrossRef
43.
Zurück zum Zitat S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015)CrossRef S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015)CrossRef
44.
Zurück zum Zitat R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Large area electronics using printing methods. Proc. IEEE 93(7), 1321–1329 (2005)CrossRef R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Large area electronics using printing methods. Proc. IEEE 93(7), 1321–1329 (2005)CrossRef
45.
Zurück zum Zitat J. Zaumseil, T. Someya, Z. Bao, Y.-L. Loo, R. Cirelli, J.A. Rogers, Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 82(5), 793–795 (2003)CrossRef J. Zaumseil, T. Someya, Z. Bao, Y.-L. Loo, R. Cirelli, J.A. Rogers, Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 82(5), 793–795 (2003)CrossRef
46.
Zurück zum Zitat S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)CrossRef S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)CrossRef
47.
Zurück zum Zitat S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)CrossRef S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)CrossRef
48.
Zurück zum Zitat S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997)CrossRef S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997)CrossRef
49.
Zurück zum Zitat D.J. Resnick, S.V. Sreenivasan, C.G. Willson, Step & flash imprint lithography. Mater. Today 8(2), 34–42 (2005)CrossRef D.J. Resnick, S.V. Sreenivasan, C.G. Willson, Step & flash imprint lithography. Mater. Today 8(2), 34–42 (2005)CrossRef
50.
Zurück zum Zitat J. Wang, X. Sun, L. Chen, S.Y. Chou, Direct nanoimprint of submicron organic light-emitting structures. Appl. Phys. Lett. 75(18), 2767–2769 (1999)CrossRef J. Wang, X. Sun, L. Chen, S.Y. Chou, Direct nanoimprint of submicron organic light-emitting structures. Appl. Phys. Lett. 75(18), 2767–2769 (1999)CrossRef
51.
Zurück zum Zitat P. Maury et al., Roll-to-roll UV imprint lithography for flexible electronics. Microelectron. Eng. 88(8), 2052–2055 (2011)CrossRef P. Maury et al., Roll-to-roll UV imprint lithography for flexible electronics. Microelectron. Eng. 88(8), 2052–2055 (2011)CrossRef
52.
Zurück zum Zitat J. Han, S. Choi, J. Lim, B.S. Lee, S. Kang, Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography. J. Phys. Appl. Phys. 42(11), 115503 (2009)CrossRef J. Han, S. Choi, J. Lim, B.S. Lee, S. Kang, Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography. J. Phys. Appl. Phys. 42(11), 115503 (2009)CrossRef
53.
Zurück zum Zitat S.H. Ahn, L.J. Guo, High-Speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20(11), 2044–2049 (2008)CrossRef S.H. Ahn, L.J. Guo, High-Speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20(11), 2044–2049 (2008)CrossRef
54.
Zurück zum Zitat H. Gold et al., Self-aligned flexible organic thin-film transistors with gates patterned by nano-imprint lithography. Org. Electron. 22, 140–146 (2015)CrossRef H. Gold et al., Self-aligned flexible organic thin-film transistors with gates patterned by nano-imprint lithography. Org. Electron. 22, 140–146 (2015)CrossRef
55.
Zurück zum Zitat A. Larmagnac, S. Eggenberger, H. Janossy, J. Vörös, Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 4 (2014) A. Larmagnac, S. Eggenberger, H. Janossy, J. Vörös, Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 4 (2014)
56.
Zurück zum Zitat S. Khan, W. Dang, L. Lorenzelli, R. Dahiya, Flexible pressure sensors based on screen-printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs. IEEE Trans. Semicond. Manuf. 28(4), 486–493 (2015)CrossRef S. Khan, W. Dang, L. Lorenzelli, R. Dahiya, Flexible pressure sensors based on screen-printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs. IEEE Trans. Semicond. Manuf. 28(4), 486–493 (2015)CrossRef
57.
Zurück zum Zitat S. Khan, S. Tinku, L. Lorenzelli, R.S. Dahiya, Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites. IEEE Sens. J. 15(6), 3146–3155 (2015)CrossRef S. Khan, S. Tinku, L. Lorenzelli, R.S. Dahiya, Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites. IEEE Sens. J. 15(6), 3146–3155 (2015)CrossRef
58.
Zurück zum Zitat J. Ping, Y. Wang, Y. Ying, J. Wu, Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal. Chem. 84(7), 3473–3479 (2012)CrossRef J. Ping, Y. Wang, Y. Ying, J. Wu, Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal. Chem. 84(7), 3473–3479 (2012)CrossRef
59.
Zurück zum Zitat D. Numakura, Advanced screen printing ‘practical approaches for printable & flexible electronics’, in 2008 3rd International Microsystems, Packaging, Assembly Circuits Technology Conference (2008), pp. 205–208 D. Numakura, Advanced screen printing ‘practical approaches for printable & flexible electronics’, in 2008 3rd International Microsystems, Packaging, Assembly Circuits Technology Conference (2008), pp. 205–208
60.
Zurück zum Zitat R. Soukup, A. Hamáček, J. Řeboun, Organic based sensors: Novel screen printing technique for sensing layers deposition, in 2012 35th International Spring Seminar on Electronics Technology (2012), pp. 19–24 R. Soukup, A. Hamáček, J. Řeboun, Organic based sensors: Novel screen printing technique for sensing layers deposition, in 2012 35th International Spring Seminar on Electronics Technology (2012), pp. 19–24
61.
Zurück zum Zitat G.E. Jabbour, R. Radspinner, N. Peyghambarian, Screen printing for the fabrication of organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 7(5), 769–773 (2001)CrossRef G.E. Jabbour, R. Radspinner, N. Peyghambarian, Screen printing for the fabrication of organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 7(5), 769–773 (2001)CrossRef
62.
Zurück zum Zitat Y. Kim, H. Kim, H.J. Yoo, Electrical characterization of screen-printed circuits on the fabric. IEEE Trans. Adv. Packag. 33(1), 196–205 (2010)MathSciNet Y. Kim, H. Kim, H.J. Yoo, Electrical characterization of screen-printed circuits on the fabric. IEEE Trans. Adv. Packag. 33(1), 196–205 (2010)MathSciNet
63.
Zurück zum Zitat B. Karaguzel et al., Flexible, durable printed electrical circuits. J. Text. Inst. 100(1), 1–9 (2009)CrossRef B. Karaguzel et al., Flexible, durable printed electrical circuits. J. Text. Inst. 100(1), 1–9 (2009)CrossRef
64.
Zurück zum Zitat J. Chang, X. Zhang, T. Ge, J. Zhou, Fully printed electronics on flexible substrates: high gain amplifiers and DAC. Org. Electron. 15(3), 701–710 (2014)CrossRef J. Chang, X. Zhang, T. Ge, J. Zhou, Fully printed electronics on flexible substrates: high gain amplifiers and DAC. Org. Electron. 15(3), 701–710 (2014)CrossRef
65.
Zurück zum Zitat G.D. Martin, S.D. Hoath, I.M. Hutchings, Inkjet printing—the physics of manipulating liquid jets and drops. J. Phys: Conf. Ser. 105(1), 012001 (2008) G.D. Martin, S.D. Hoath, I.M. Hutchings, Inkjet printing—the physics of manipulating liquid jets and drops. J. Phys: Conf. Ser. 105(1), 012001 (2008)
66.
Zurück zum Zitat B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRef B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRef
67.
Zurück zum Zitat Y.-F. Liu, W.-S. Hwang, Y.-F. Pai, M.-H. Tsai, Low temperature fabricated conductive lines on flexible substrate by inkjet printing. Microelectron. Reliab. 52(2), 391–397 (2012)CrossRef Y.-F. Liu, W.-S. Hwang, Y.-F. Pai, M.-H. Tsai, Low temperature fabricated conductive lines on flexible substrate by inkjet printing. Microelectron. Reliab. 52(2), 391–397 (2012)CrossRef
68.
Zurück zum Zitat D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)CrossRef D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)CrossRef
69.
Zurück zum Zitat J. Stringer, B. Derby, Formation and stability of lines produced by inkjet printing. Langmuir 26(12), 10365–10372 (2010)CrossRef J. Stringer, B. Derby, Formation and stability of lines produced by inkjet printing. Langmuir 26(12), 10365–10372 (2010)CrossRef
70.
Zurück zum Zitat E. Fribourg-Blanc, D.M.T. Dang, C.M. Dang, Characterization of silver nanoparticle based inkjet printed lines. Microsyst. Technol. 19(12), 1961–1971 (2013)CrossRef E. Fribourg-Blanc, D.M.T. Dang, C.M. Dang, Characterization of silver nanoparticle based inkjet printed lines. Microsyst. Technol. 19(12), 1961–1971 (2013)CrossRef
71.
Zurück zum Zitat T.H.J. van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20(2), 343–345 (2008)CrossRef T.H.J. van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20(2), 343–345 (2008)CrossRef
72.
Zurück zum Zitat B.J. Kang, J.H. Oh, Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate. Thin Solid Films 518(10), 2890–2896 (2010)CrossRef B.J. Kang, J.H. Oh, Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate. Thin Solid Films 518(10), 2890–2896 (2010)CrossRef
73.
Zurück zum Zitat J. Perelaer et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446–8453 (2010)CrossRef J. Perelaer et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446–8453 (2010)CrossRef
74.
Zurück zum Zitat A. Chiolerio et al., Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron. Eng. 88(8), 2481–2483 (2011)CrossRef A. Chiolerio et al., Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron. Eng. 88(8), 2481–2483 (2011)CrossRef
75.
Zurück zum Zitat S. Chung, S.O. Kim, S.K. Kwon, C. Lee, Y. Hong, All-inkjet-printed organic thin-film transistor inverter on flexible plastic substrate. IEEE Electron Device Lett. 32(8), 1134–1136 (2011)CrossRef S. Chung, S.O. Kim, S.K. Kwon, C. Lee, Y. Hong, All-inkjet-printed organic thin-film transistor inverter on flexible plastic substrate. IEEE Electron Device Lett. 32(8), 1134–1136 (2011)CrossRef
76.
Zurück zum Zitat I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)CrossRef I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)CrossRef
77.
Zurück zum Zitat S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuators Phys. 134(1), 161–168 (2007)CrossRef S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuators Phys. 134(1), 161–168 (2007)CrossRef
78.
Zurück zum Zitat D. Tobjörk et al., IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520(7), 2949–2955 (2012)CrossRef D. Tobjörk et al., IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520(7), 2949–2955 (2012)CrossRef
79.
Zurück zum Zitat P.J. Smith, D.-Y. Shin, J.E. Stringer, B. Derby, N. Reis, Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 41(13), 4153–4158 (2006)CrossRef P.J. Smith, D.-Y. Shin, J.E. Stringer, B. Derby, N. Reis, Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 41(13), 4153–4158 (2006)CrossRef
80.
Zurück zum Zitat S. Jeong, H.C. Song, W.W. Lee, Y. Choi, B.-H. Ryu, Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film. J. Appl. Phys. 108(10), 102805 (2010)CrossRef S. Jeong, H.C. Song, W.W. Lee, Y. Choi, B.-H. Ryu, Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film. J. Appl. Phys. 108(10), 102805 (2010)CrossRef
81.
Zurück zum Zitat G. McKerricher, J.G. Perez, A. Shamim, Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias. IEEE Trans. Electron Devices 62(3), 1002–1009 (2015)CrossRef G. McKerricher, J.G. Perez, A. Shamim, Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias. IEEE Trans. Electron Devices 62(3), 1002–1009 (2015)CrossRef
82.
Zurück zum Zitat J.F. Salmerón et al., Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. J. Electron. Mater. 43(2), 604–617 (2013)CrossRef J.F. Salmerón et al., Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. J. Electron. Mater. 43(2), 604–617 (2013)CrossRef
83.
Zurück zum Zitat Y. Liu, T. Cui, K. Varahramyan, All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron. 47(9), 1543–1548 (2003)CrossRef Y. Liu, T. Cui, K. Varahramyan, All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron. 47(9), 1543–1548 (2003)CrossRef
84.
Zurück zum Zitat B. Chen, T. Cui, Y. Liu, K. Varahramyan, All-polymer RC filter circuits fabricated with inkjet printing technology. Solid-State Electron. 47(5), 841–847 (2003)CrossRef B. Chen, T. Cui, Y. Liu, K. Varahramyan, All-polymer RC filter circuits fabricated with inkjet printing technology. Solid-State Electron. 47(5), 841–847 (2003)CrossRef
85.
Zurück zum Zitat D. Mager et al., An MRI receiver coil produced by inkjet printing directly on to a flexible substrate. IEEE Trans. Med. Imaging 29(2), 482–487 (2010)CrossRef D. Mager et al., An MRI receiver coil produced by inkjet printing directly on to a flexible substrate. IEEE Trans. Med. Imaging 29(2), 482–487 (2010)CrossRef
86.
Zurück zum Zitat B.S. Cook, A. Shamim, Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate. IEEE Trans. Antennas Propag. 60(9), 4148–4156 (2012)CrossRef B.S. Cook, A. Shamim, Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate. IEEE Trans. Antennas Propag. 60(9), 4148–4156 (2012)CrossRef
87.
Zurück zum Zitat L. Yang, A. Rida, R. Vyas, M.M. Tentzeris, RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 55(12), 2894–2901 (2007)CrossRef L. Yang, A. Rida, R. Vyas, M.M. Tentzeris, RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 55(12), 2894–2901 (2007)CrossRef
88.
Zurück zum Zitat R. Vyas et al., Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11(12), 3139–3152 (2011)CrossRef R. Vyas et al., Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11(12), 3139–3152 (2011)CrossRef
89.
Zurück zum Zitat H.-Y. Tseng, V. Subramanian, All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org. Electron. 12(2), 249–256 (2011)CrossRef H.-Y. Tseng, V. Subramanian, All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org. Electron. 12(2), 249–256 (2011)CrossRef
90.
Zurück zum Zitat S. Chung, J. Jang, J. Cho, C. Lee, S.-K. Kwon, Y. Hong, All-inkjet-printed organic thin-film transistors with silver gate, source/drain electrodes. Jpn. J. Appl. Phys. 50(3S), 03CB05 (2011) S. Chung, J. Jang, J. Cho, C. Lee, S.-K. Kwon, Y. Hong, All-inkjet-printed organic thin-film transistors with silver gate, source/drain electrodes. Jpn. J. Appl. Phys. 50(3S), 03CB05 (2011)
91.
Zurück zum Zitat T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Inkjet printing of polymer thin film transistors. Thin Solid Films 438–439, 279–287 (2003)CrossRef T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Inkjet printing of polymer thin film transistors. Thin Solid Films 438–439, 279–287 (2003)CrossRef
92.
Zurück zum Zitat H. Sirringhaus et al., High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499), 2123–2126 (2000)CrossRef H. Sirringhaus et al., High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499), 2123–2126 (2000)CrossRef
93.
Zurück zum Zitat D.J. Lichtenwalner, A.E. Hydrick, A.I. Kingon, Flexible thin film temperature and strain sensor array utilizing a novel sensing concept. Sens. Actuators Phys. 135(2), 593–597 (2007)CrossRef D.J. Lichtenwalner, A.E. Hydrick, A.I. Kingon, Flexible thin film temperature and strain sensor array utilizing a novel sensing concept. Sens. Actuators Phys. 135(2), 593–597 (2007)CrossRef
94.
Zurück zum Zitat H. Al-Chami, E. Cretu, Inkjet printing of microsensors, in IEEE 15th International Mixed-Signals, Sensors, and Systems Test Workshop 2009 (IMS3TW ’09) (2009), pp. 1–6 H. Al-Chami, E. Cretu, Inkjet printing of microsensors, in IEEE 15th International Mixed-Signals, Sensors, and Systems Test Workshop 2009 (IMS3TW ’09) (2009), pp. 1–6
95.
Zurück zum Zitat P. Alpuim, V. Correia, E.S. Marins, J.G. Rocha, I.G. Trindade, S. Lanceros-Mendez, Piezoresistive silicon thin film sensor array for biomedical applications. Thin Solid Films 519(14), 4574–4577 (2011)CrossRef P. Alpuim, V. Correia, E.S. Marins, J.G. Rocha, I.G. Trindade, S. Lanceros-Mendez, Piezoresistive silicon thin film sensor array for biomedical applications. Thin Solid Films 519(14), 4574–4577 (2011)CrossRef
96.
Zurück zum Zitat F. Molina-Lopez, D. Briand, N.F. de Rooij, All additive inkjet printed humidity sensors on plastic substrate. Sens. Actuators B Chem. 166–167, 212–222 (2012)CrossRef F. Molina-Lopez, D. Briand, N.F. de Rooij, All additive inkjet printed humidity sensors on plastic substrate. Sens. Actuators B Chem. 166–167, 212–222 (2012)CrossRef
97.
Zurück zum Zitat M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, B.B. Kale, Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B Chem. 178, 140–143 (2013)CrossRef M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, B.B. Kale, Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B Chem. 178, 140–143 (2013)CrossRef
98.
Zurück zum Zitat A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo, J.A. López-Villanueva, L.F. Capitan-Vallvey, A.J. Palma, Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing. Sens. Actuators B Chem. 195, 123–131 (2014)CrossRef A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo, J.A. López-Villanueva, L.F. Capitan-Vallvey, A.J. Palma, Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing. Sens. Actuators B Chem. 195, 123–131 (2014)CrossRef
99.
Zurück zum Zitat U. Altenberend et al., Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sens. Actuators B Chem. 187, 280–287 (2013)CrossRef U. Altenberend et al., Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sens. Actuators B Chem. 187, 280–287 (2013)CrossRef
100.
Zurück zum Zitat P. Sjöberg et al., Paper-based potentiometric ion sensors constructed on ink-jet printed gold electrodes. Sens. Actuators B Chem. 224, 325–332 (2016)CrossRef P. Sjöberg et al., Paper-based potentiometric ion sensors constructed on ink-jet printed gold electrodes. Sens. Actuators B Chem. 224, 325–332 (2016)CrossRef
101.
Zurück zum Zitat N. Komuro, S. Takaki, K. Suzuki, D. Citterio, Inkjet printed (bio)chemical sensing devices. Anal. Bioanal. Chem. 405(17), 5785–5805 (2013)CrossRef N. Komuro, S. Takaki, K. Suzuki, D. Citterio, Inkjet printed (bio)chemical sensing devices. Anal. Bioanal. Chem. 405(17), 5785–5805 (2013)CrossRef
102.
Zurück zum Zitat J. Wu et al., Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Lab Chip 15(3), 690–695 (2015)CrossRef J. Wu et al., Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Lab Chip 15(3), 690–695 (2015)CrossRef
103.
Zurück zum Zitat C.L. Kang, Y. Xu, K.L. Yung, W. Chen, Laser Induced Forward Transfer. Adv. Mater. Res. 591–593, 1135–1138 (2012)CrossRef C.L. Kang, Y. Xu, K.L. Yung, W. Chen, Laser Induced Forward Transfer. Adv. Mater. Res. 591–593, 1135–1138 (2012)CrossRef
104.
Zurück zum Zitat P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, J.L. Morenza, Laser-induced forward transfer: a direct-writing technique for biosensors preparation. J. Laser MicroNanoengineering 1(3), 236–242 (2006)CrossRef P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, J.L. Morenza, Laser-induced forward transfer: a direct-writing technique for biosensors preparation. J. Laser MicroNanoengineering 1(3), 236–242 (2006)CrossRef
105.
Zurück zum Zitat C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, I. Zergioti, Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid. Nanofluidics 16(3), 493–500 (2013)CrossRef C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, I. Zergioti, Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid. Nanofluidics 16(3), 493–500 (2013)CrossRef
106.
Zurück zum Zitat R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy. J. Phys. Chem. C 114(12), 5617–5636 (2010)CrossRef R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy. J. Phys. Chem. C 114(12), 5617–5636 (2010)CrossRef
107.
Zurück zum Zitat C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 96(4), 041104 (2010)CrossRef C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 96(4), 041104 (2010)CrossRef
108.
Zurück zum Zitat A.P. Suryavanshi, M.-F. Yu, Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl. Phys. Lett. 88(8), 083103 (2006)CrossRef A.P. Suryavanshi, M.-F. Yu, Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl. Phys. Lett. 88(8), 083103 (2006)CrossRef
109.
Zurück zum Zitat J. Hu, M.-F. Yu, Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329(5989), 313–316 (2010)CrossRef J. Hu, M.-F. Yu, Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329(5989), 313–316 (2010)CrossRef
110.
Zurück zum Zitat B.Y. Ahn et al., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921), 1590–1593 (2009)CrossRef B.Y. Ahn et al., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921), 1590–1593 (2009)CrossRef
111.
Zurück zum Zitat E. Macdonald et al., 3D printing for the rapid prototyping of structural electronics. IEEE Access 2, 234–242 (2014)CrossRef E. Macdonald et al., 3D printing for the rapid prototyping of structural electronics. IEEE Access 2, 234–242 (2014)CrossRef
112.
Zurück zum Zitat P. Mostafalu, M. Akbari, K.A. Alberti, Q. Xu, A. Khademhosseini, S.R. Sonkusale, A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng. 2, 16039 (2016)CrossRef P. Mostafalu, M. Akbari, K.A. Alberti, Q. Xu, A. Khademhosseini, S.R. Sonkusale, A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng. 2, 16039 (2016)CrossRef
113.
Zurück zum Zitat T.F. O’Connor, K.M. Rajan, A.D. Printz, D.J. Lipomi, Toward organic electronics with properties inspired by biological tissue. J. Mater. Chem. B 3(25), 4947–4952 (2015)CrossRef T.F. O’Connor, K.M. Rajan, A.D. Printz, D.J. Lipomi, Toward organic electronics with properties inspired by biological tissue. J. Mater. Chem. B 3(25), 4947–4952 (2015)CrossRef
114.
Zurück zum Zitat L. Cai, C. Wang, Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10(1), 1–21 (2015)CrossRef L. Cai, C. Wang, Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10(1), 1–21 (2015)CrossRef
115.
Zurück zum Zitat J. Li et al., Graphene film-functionalized germanium as a chemically stable, electrically conductive, and biologically active substrate. J. Mater. Chem. B 3(8), 1544–1555 (2015)CrossRef J. Li et al., Graphene film-functionalized germanium as a chemically stable, electrically conductive, and biologically active substrate. J. Mater. Chem. B 3(8), 1544–1555 (2015)CrossRef
116.
Zurück zum Zitat S. Wang, Y. Huang, J.A. Rogers, Mechanical designs for inorganic stretchable circuits in soft electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 5(9), 1201–1218 (2015)CrossRef S. Wang, Y. Huang, J.A. Rogers, Mechanical designs for inorganic stretchable circuits in soft electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 5(9), 1201–1218 (2015)CrossRef
117.
Zurück zum Zitat C. Wang, J.-.C. Chien, K. Takei, T. Takahashi, J. Nah, A.M. Niknejad, Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12(3), 1527–1533 (2012) C. Wang, J.-.C. Chien, K. Takei, T. Takahashi, J. Nah, A.M. Niknejad, Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12(3), 1527–1533 (2012)
118.
Zurück zum Zitat C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 12, 899–904 (2013) C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 12, 899–904 (2013)
119.
Zurück zum Zitat N. Chou, S. Yoo, S. Kim, A largely deformable surface type neural electrode array based on PDMS. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 544–553 (2013)CrossRef N. Chou, S. Yoo, S. Kim, A largely deformable surface type neural electrode array based on PDMS. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 544–553 (2013)CrossRef
120.
Zurück zum Zitat S.J. Kim et al., The potential role of polymethyl methacrylate as a new packaging material for the implantable medical device in the bladder. Biomed. Res. Int. 2015, 852456 (2015) S.J. Kim et al., The potential role of polymethyl methacrylate as a new packaging material for the implantable medical device in the bladder. Biomed. Res. Int. 2015, 852456 (2015)
121.
Zurück zum Zitat W. J. Bae et al., AB222. Comparison of biocompatibility between PDMS and PMMA as packaging materials for the intravesical implantable device: changes of macrophage and macrophage migratory inhibitory factor. Transl. Androl. Urol. 3(Suppl 1) (2014) W. J. Bae et al., AB222. Comparison of biocompatibility between PDMS and PMMA as packaging materials for the intravesical implantable device: changes of macrophage and macrophage migratory inhibitory factor. Transl. Androl. Urol. 3(Suppl 1) (2014)
122.
Zurück zum Zitat B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31(13), 3449–3458 (2010)CrossRef B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31(13), 3449–3458 (2010)CrossRef
123.
Zurück zum Zitat Y. Qin, M.M.R. Howlader, M.J. Deen, Y.M. Haddara, P.R. Selvaganapathy, Polymer integration for packaging of implantable sensors. Sens. Actuators B Chem. 202, 758–778 (2014)CrossRef Y. Qin, M.M.R. Howlader, M.J. Deen, Y.M. Haddara, P.R. Selvaganapathy, Polymer integration for packaging of implantable sensors. Sens. Actuators B Chem. 202, 758–778 (2014)CrossRef
124.
Zurück zum Zitat M.M.R. Howlader, M. Iwashita, K. Nanbu, K. Saijo, T. Suga, Enhanced Cu/LCP adhesion by pre-sputter cleaning prior to Cu deposition. IEEE Trans. Adv. Packag. 28(3), 495–502 (2005)CrossRef M.M.R. Howlader, M. Iwashita, K. Nanbu, K. Saijo, T. Suga, Enhanced Cu/LCP adhesion by pre-sputter cleaning prior to Cu deposition. IEEE Trans. Adv. Packag. 28(3), 495–502 (2005)CrossRef
125.
Zurück zum Zitat Y. Zhang, D. Li, Y. Li, S. Zhang, M. Wang, Y. Li, High electric conductivity of liquid crystals formed by ordered self-assembly of nonionic surfactant N,N-bis(2-hydroxyethyl)dodecanamide in water. Soft Matter 11(9), 1762–1766 (2015)CrossRef Y. Zhang, D. Li, Y. Li, S. Zhang, M. Wang, Y. Li, High electric conductivity of liquid crystals formed by ordered self-assembly of nonionic surfactant N,N-bis(2-hydroxyethyl)dodecanamide in water. Soft Matter 11(9), 1762–1766 (2015)CrossRef
126.
Zurück zum Zitat C.J. Bettinger, J.P. Bruggeman, A. Misra, J.T. Borenstein, R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30(17), 3050–3057 (2009)CrossRef C.J. Bettinger, J.P. Bruggeman, A. Misra, J.T. Borenstein, R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30(17), 3050–3057 (2009)CrossRef
127.
Zurück zum Zitat C.L.E. Nijst et al., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromol 8(10), 3067–3073 (2007)CrossRef C.L.E. Nijst et al., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromol 8(10), 3067–3073 (2007)CrossRef
128.
Zurück zum Zitat M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Biodegradable polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 805–813 (2008)CrossRef M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Biodegradable polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 805–813 (2008)CrossRef
129.
Zurück zum Zitat A. Campana, T. Cramer, D.T. Simon, M. Berggren, F. Biscarini, Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26(23), 3874–3878 (2014)CrossRef A. Campana, T. Cramer, D.T. Simon, M. Berggren, F. Biscarini, Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26(23), 3874–3878 (2014)CrossRef
130.
Zurück zum Zitat G. Mattana, D. Briand, A. Marette, A. Vásquez Quintero, N.F. de Rooij, Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Org. Electron. 17, 77–86 (2015) G. Mattana, D. Briand, A. Marette, A. Vásquez Quintero, N.F. de Rooij, Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Org. Electron. 17, 77–86 (2015)
131.
Zurück zum Zitat D.-H. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)CrossRef D.-H. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)CrossRef
132.
Zurück zum Zitat Y. Liu et al., Highly flexible and lightweight organic solar cells on biocompatible silk fibroin. ACS Appl. Mater. Interfaces. 6(23), 20670–20675 (2014)CrossRef Y. Liu et al., Highly flexible and lightweight organic solar cells on biocompatible silk fibroin. ACS Appl. Mater. Interfaces. 6(23), 20670–20675 (2014)CrossRef
133.
Zurück zum Zitat C.J. Bettinger, Z. Bao, Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22(5), 651–655 (2010)CrossRef C.J. Bettinger, Z. Bao, Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22(5), 651–655 (2010)CrossRef
134.
Zurück zum Zitat M. Irimia-Vladu et al., Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24(3), 375–380 (2012)CrossRef M. Irimia-Vladu et al., Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24(3), 375–380 (2012)CrossRef
135.
Zurück zum Zitat M. Irimia-Vladu, N.S. Sariciftci, S. Bauer, Exotic materials for bio-organic electronics. J. Mater. Chem. 21(5), 1350–1361 (2011)CrossRef M. Irimia-Vladu, N.S. Sariciftci, S. Bauer, Exotic materials for bio-organic electronics. J. Mater. Chem. 21(5), 1350–1361 (2011)CrossRef
136.
Zurück zum Zitat M. Irimia-Vladu et al., Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)CrossRef M. Irimia-Vladu et al., Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)CrossRef
137.
Zurück zum Zitat T.K. Das, S. Prusty, Review on conducting polymers and their applications. Polym.-Plast. Technol. Eng. 51(14), 1487–1500 (2012)CrossRef T.K. Das, S. Prusty, Review on conducting polymers and their applications. Polym.-Plast. Technol. Eng. 51(14), 1487–1500 (2012)CrossRef
138.
Zurück zum Zitat N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32(8–9), 876–921 (2007)CrossRef N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32(8–9), 876–921 (2007)CrossRef
139.
Zurück zum Zitat S. Kim, J.-H. Kim, O. Jeon, I.C. Kwon, K. Park, Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 71(3), 420–430 (2009)CrossRef S. Kim, J.-H. Kim, O. Jeon, I.C. Kwon, K. Park, Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 71(3), 420–430 (2009)CrossRef
140.
Zurück zum Zitat J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33(4), 448–477 (2008)CrossRef J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33(4), 448–477 (2008)CrossRef
141.
Zurück zum Zitat S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26(5), 1825–1832 (2011)CrossRef S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26(5), 1825–1832 (2011)CrossRef
142.
Zurück zum Zitat H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)CrossRef H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)CrossRef
143.
Zurück zum Zitat C.K. Chiang et al., Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)CrossRef C.K. Chiang et al., Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)CrossRef
144.
Zurück zum Zitat C.K. Chiang, S.C. Gau, C.R.F. Jr, Y.W. Park, A.G. MacDiarmid, A.J. Heeger, Polyacetylene, (CH)x: n-type and p-type doping and compensation. Appl. Phys. Lett. 33(1), 18–20 (1978)CrossRef C.K. Chiang, S.C. Gau, C.R.F. Jr, Y.W. Park, A.G. MacDiarmid, A.J. Heeger, Polyacetylene, (CH)x: n-type and p-type doping and compensation. Appl. Phys. Lett. 33(1), 18–20 (1978)CrossRef
145.
Zurück zum Zitat S. Stassi, V. Cauda, G. Canavese, C.F. Pirri, Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14(3), 5296–5332 (2014)CrossRef S. Stassi, V. Cauda, G. Canavese, C.F. Pirri, Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14(3), 5296–5332 (2014)CrossRef
146.
Zurück zum Zitat C. Li, P.M. Wu, S. Lee, A. Gorton, M.J. Schulz, C.H. Ahn, Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromechanical Syst. 17(2), 334–341 (2008)CrossRef C. Li, P.M. Wu, S. Lee, A. Gorton, M.J. Schulz, C.H. Ahn, Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromechanical Syst. 17(2), 334–341 (2008)CrossRef
147.
Zurück zum Zitat V. Maheshwari, R.F. Saraf, High-resolution thin-film device to sense texture by touch. Science 312(5779), 1501–1504 (2006)CrossRef V. Maheshwari, R.F. Saraf, High-resolution thin-film device to sense texture by touch. Science 312(5779), 1501–1504 (2006)CrossRef
148.
Zurück zum Zitat T. Nelson, R. vanDover, S. Jin, S. Hackwood, G. Beni, Shear-sensitive magnetoresistive robotic tactile sensor. IEEE Trans. Magn. 22(5), 394–396 (1986) T. Nelson, R. vanDover, S. Jin, S. Hackwood, G. Beni, Shear-sensitive magnetoresistive robotic tactile sensor. IEEE Trans. Magn. 22(5), 394–396 (1986)
149.
Zurück zum Zitat G.M. Krishna, K. Rajanna, Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 4(5), 691–697 (2004)CrossRef G.M. Krishna, K. Rajanna, Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 4(5), 691–697 (2004)CrossRef
150.
Zurück zum Zitat S.C.B. Mannsfeld et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010)CrossRef S.C.B. Mannsfeld et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010)CrossRef
151.
Zurück zum Zitat J.A. Dobrzynska, M.A.M. Gijs, Flexible polyimide-based force sensor. Sens. Actuators Phys. 173(1), 127–135 (2012)CrossRef J.A. Dobrzynska, M.A.M. Gijs, Flexible polyimide-based force sensor. Sens. Actuators Phys. 173(1), 127–135 (2012)CrossRef
152.
Zurück zum Zitat Y. Zhou, C.-W. Chiu, H. Liang, Interfacial structures and properties of organic materials for biosensors: an overview. Sensors 12(11), 15036–15062 (2012)CrossRef Y. Zhou, C.-W. Chiu, H. Liang, Interfacial structures and properties of organic materials for biosensors: an overview. Sensors 12(11), 15036–15062 (2012)CrossRef
153.
Zurück zum Zitat J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2(1), 19–24 (2003)CrossRef J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2(1), 19–24 (2003)CrossRef
154.
Zurück zum Zitat M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)CrossRef M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)CrossRef
155.
Zurück zum Zitat D.D. Borole, U.R. Kapadi, P.P. Mahulikar, D.G. Hundiwale, Conducting polymers: an emerging field of biosensors. Des. Monomers Polym. 9(1), 1–11 (2006)CrossRef D.D. Borole, U.R. Kapadi, P.P. Mahulikar, D.G. Hundiwale, Conducting polymers: an emerging field of biosensors. Des. Monomers Polym. 9(1), 1–11 (2006)CrossRef
156.
Zurück zum Zitat C.-C. Wen, W. Fang, Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane. Sens. Actuators Phys. 145–146, 14–22 (2008)CrossRef C.-C. Wen, W. Fang, Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane. Sens. Actuators Phys. 145–146, 14–22 (2008)CrossRef
157.
Zurück zum Zitat B.J. Kane, M.R. Cutkosky, G.T.A. Kovacs, A traction stress sensor array for use in high-resolution robotic tactile imaging. J. Microelectromechanical Syst. 9(4), 425–434 (2000)CrossRef B.J. Kane, M.R. Cutkosky, G.T.A. Kovacs, A traction stress sensor array for use in high-resolution robotic tactile imaging. J. Microelectromechanical Syst. 9(4), 425–434 (2000)CrossRef
158.
Zurück zum Zitat H. Hu, K. Shaikh, C. Liu, Super flexible sensor skin using liquid metal as interconnect, 2007 in IEEE Sensors (2007), pp. 815–817 H. Hu, K. Shaikh, C. Liu, Super flexible sensor skin using liquid metal as interconnect, 2007 in IEEE Sensors (2007), pp. 815–817
159.
Zurück zum Zitat M.-Y. Cheng, C.-M. Tsao, Y.-Z. Lai, Y.-J. Yang, The development of a highly twistable tactile sensing array with stretchable helical electrodes. Sens. Actuators Phys. 166(2), 226–233 (2011)CrossRef M.-Y. Cheng, C.-M. Tsao, Y.-Z. Lai, Y.-J. Yang, The development of a highly twistable tactile sensing array with stretchable helical electrodes. Sens. Actuators Phys. 166(2), 226–233 (2011)CrossRef
160.
Zurück zum Zitat Y.-J. Yang et al., An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators Phys. 143(1), 143–153 (2008)CrossRef Y.-J. Yang et al., An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators Phys. 143(1), 143–153 (2008)CrossRef
161.
Zurück zum Zitat B. Dong, M. Krutschke, X. Zhang, L. Chi, H. Fuchs, Fabrication of polypyrrole wires between microelectrodes. Small 1(5), 520–524 (2005)CrossRef B. Dong, M. Krutschke, X. Zhang, L. Chi, H. Fuchs, Fabrication of polypyrrole wires between microelectrodes. Small 1(5), 520–524 (2005)CrossRef
162.
Zurück zum Zitat B. Dong, D.Y. Zhong, L.F. Chi, H. Fuchs, Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 17(22), 2736–2741 (2005)CrossRef B. Dong, D.Y. Zhong, L.F. Chi, H. Fuchs, Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 17(22), 2736–2741 (2005)CrossRef
163.
Zurück zum Zitat A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)CrossRef A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)CrossRef
164.
Zurück zum Zitat A. Nathan et al., Flexible electronics: the next ubiquitous platform. Proc. IEEE. 100(Special Centennial Issue), May 2012, pp. 1486–1517 A. Nathan et al., Flexible electronics: the next ubiquitous platform. Proc. IEEE. 100(Special Centennial Issue), May 2012, pp. 1486–1517
165.
Zurück zum Zitat A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
166.
Zurück zum Zitat K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
167.
Zurück zum Zitat F. Withers et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)CrossRef F. Withers et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)CrossRef
168.
Zurück zum Zitat Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRef Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRef
169.
Zurück zum Zitat F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef
170.
Zurück zum Zitat S.-K. Lee et al., All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12(7), 3472–3476 (2012)CrossRef S.-K. Lee et al., All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12(7), 3472–3476 (2012)CrossRef
171.
Zurück zum Zitat S.-K. Lee et al., Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11(11), 4642–4646 (2011)CrossRef S.-K. Lee et al., Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11(11), 4642–4646 (2011)CrossRef
172.
Zurück zum Zitat S. Riazimehr et al., Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid-State Electron. 115(Part B), 207–212 (2016) S. Riazimehr et al., Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid-State Electron. 115(Part B), 207–212 (2016)
173.
Zurück zum Zitat M.C. Lemme et al., Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)CrossRef M.C. Lemme et al., Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)CrossRef
174.
Zurück zum Zitat T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)CrossRef T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)CrossRef
175.
Zurück zum Zitat X. Gan et al., Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)CrossRef X. Gan et al., Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)CrossRef
176.
Zurück zum Zitat A. Pospischil et al., CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)CrossRef A. Pospischil et al., CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)CrossRef
177.
Zurück zum Zitat F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014)CrossRef F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014)CrossRef
178.
Zurück zum Zitat D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9(8), 1188–1205 (2013)CrossRef D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9(8), 1188–1205 (2013)CrossRef
179.
Zurück zum Zitat L. Buglione, E.L.K. Chng, A. Ambrosi, Z. Sofer, M. Pumera, Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochem. Commun. 14(1), 5–8 (2012)CrossRef L. Buglione, E.L.K. Chng, A. Ambrosi, Z. Sofer, M. Pumera, Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochem. Commun. 14(1), 5–8 (2012)CrossRef
180.
Zurück zum Zitat A. Bonanni, M. Pumera, High-resolution impedance spectroscopy for graphene characterization. Electrochem. Commun. 26, 52–54 (2013)CrossRef A. Bonanni, M. Pumera, High-resolution impedance spectroscopy for graphene characterization. Electrochem. Commun. 26, 52–54 (2013)CrossRef
181.
Zurück zum Zitat G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRef G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRef
182.
Zurück zum Zitat S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef
183.
Zurück zum Zitat T. Kobayashi et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)CrossRef T. Kobayashi et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)CrossRef
184.
Zurück zum Zitat L. Gao, G.-X. Ni, Y. Liu, B. Liu, A.H. Castro Neto, K.P. Loh, Face-to-face transfer of wafer-scale graphene films. Nature 505(7482), 190–194 (2014) L. Gao, G.-X. Ni, Y. Liu, B. Liu, A.H. Castro Neto, K.P. Loh, Face-to-face transfer of wafer-scale graphene films. Nature 505(7482), 190–194 (2014)
185.
Zurück zum Zitat C. Yan, J.H. Cho, J.-H. Ahn, Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16), 4870–4882 (2012)CrossRef C. Yan, J.H. Cho, J.-H. Ahn, Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16), 4870–4882 (2012)CrossRef
186.
Zurück zum Zitat K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRef K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRef
187.
Zurück zum Zitat M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser Scribing of High-Performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser Scribing of High-Performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef
188.
Zurück zum Zitat V.L. Solozhenko, A.G. Lazarenko, J.-P. Petitet, A.V. Kanaev, Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62(7), 1331–1334 (2001)CrossRef V.L. Solozhenko, A.G. Lazarenko, J.-P. Petitet, A.V. Kanaev, Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62(7), 1331–1334 (2001)CrossRef
189.
Zurück zum Zitat H. Amano, T. Asahi, I. Akasaki, Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 29(Part 2, No. 2), L205–L206 (1990) H. Amano, T. Asahi, I. Akasaki, Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 29(Part 2, No. 2), L205–L206 (1990)
190.
Zurück zum Zitat K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)CrossRef K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)CrossRef
191.
Zurück zum Zitat M. Wang et al., A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)CrossRef M. Wang et al., A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)CrossRef
192.
Zurück zum Zitat C.R. Dean et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)CrossRef C.R. Dean et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)CrossRef
193.
Zurück zum Zitat K.K. Kim et al., Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)CrossRef K.K. Kim et al., Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)CrossRef
194.
Zurück zum Zitat Z. Liu et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8(2), 119–124 (2013)CrossRef Z. Liu et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8(2), 119–124 (2013)CrossRef
195.
Zurück zum Zitat E. Kim, T. Yu, E.S. Song, B. Yu, Chemical vapor deposition-assembled graphene field-effect transistor on hexagonal boron nitride. Appl. Phys. Lett. 98(26), 262103 (2011)CrossRef E. Kim, T. Yu, E.S. Song, B. Yu, Chemical vapor deposition-assembled graphene field-effect transistor on hexagonal boron nitride. Appl. Phys. Lett. 98(26), 262103 (2011)CrossRef
196.
Zurück zum Zitat J. Lee et al., High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron Device Lett. 34(2), 172–174 (2013)CrossRef J. Lee et al., High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron Device Lett. 34(2), 172–174 (2013)CrossRef
197.
Zurück zum Zitat R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35(12), 6195–6202 (1987)CrossRef R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35(12), 6195–6202 (1987)CrossRef
198.
Zurück zum Zitat C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, H. Liu, Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)CrossRef C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, H. Liu, Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)CrossRef
199.
Zurück zum Zitat C. Lee et al., Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)CrossRef C. Lee et al., Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)CrossRef
200.
Zurück zum Zitat J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969)CrossRef J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969)CrossRef
201.
Zurück zum Zitat B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef
202.
Zurück zum Zitat N.R. Pradhan et al., Field-effect transistors based on few-layered α-MoTe2. ACS Nano. 8(6), 5911–5920 (2014)CrossRef N.R. Pradhan et al., Field-effect transistors based on few-layered α-MoTe2. ACS Nano. 8(6), 5911–5920 (2014)CrossRef
203.
Zurück zum Zitat G.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano. 7(9), 7931–7936 (2013)CrossRef G.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano. 7(9), 7931–7936 (2013)CrossRef
204.
Zurück zum Zitat G. Fiori et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)CrossRef G. Fiori et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)CrossRef
205.
Zurück zum Zitat D. B. Velusamy et al., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 6, 8063 (2015) D. B. Velusamy et al., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 6, 8063 (2015)
206.
Zurück zum Zitat C. Kim, T.P. Nguyen, Q.V. Le, J.-M. Jeon, H.W. Jang, S.Y. Kim, Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 25(28), 4512–4519 (2015)CrossRef C. Kim, T.P. Nguyen, Q.V. Le, J.-M. Jeon, H.W. Jang, S.Y. Kim, Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 25(28), 4512–4519 (2015)CrossRef
207.
Zurück zum Zitat A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and applications for large area electronics: solution-based approaches, Chem. Rev. 110(1), 3–24 (2010) A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and applications for large area electronics: solution-based approaches, Chem. Rev. 110(1), 3–24 (2010)
208.
Zurück zum Zitat S.H. Chang, C.H. Chiang, F.S. Kao, C.L. Tien, C.G. Wu, Unraveling the enhanced electrical conductivity of PEDOT:PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 6(4), 1–7 (2014)CrossRef S.H. Chang, C.H. Chiang, F.S. Kao, C.L. Tien, C.G. Wu, Unraveling the enhanced electrical conductivity of PEDOT:PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 6(4), 1–7 (2014)CrossRef
209.
Zurück zum Zitat H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39, 2643–2666 (2010) H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39, 2643–2666 (2010)
210.
Zurück zum Zitat T.W. Kelley et al., Recent progress in organic electronics: materials, devices, and processes. Chem. Mater. 16(23), 4413–4422 (2004)CrossRef T.W. Kelley et al., Recent progress in organic electronics: materials, devices, and processes. Chem. Mater. 16(23), 4413–4422 (2004)CrossRef
211.
Zurück zum Zitat F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Organic electronics on paper. Appl. Phys. Lett. 84(14), 2673–2675 (2004)CrossRef F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Organic electronics on paper. Appl. Phys. Lett. 84(14), 2673–2675 (2004)CrossRef
212.
Zurück zum Zitat V. Benfenati et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)MathSciNetCrossRef V. Benfenati et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)MathSciNetCrossRef
213.
Zurück zum Zitat M. Katsuhara et al., 44.2: Distinguished Paper: a reliable flexible OLED display with an OTFT backplane manufactured using a scalable process. SID Symp. Dig. Tech. Pap. 40(1), 656–659 (2009)CrossRef M. Katsuhara et al., 44.2: Distinguished Paper: a reliable flexible OLED display with an OTFT backplane manufactured using a scalable process. SID Symp. Dig. Tech. Pap. 40(1), 656–659 (2009)CrossRef
214.
Zurück zum Zitat T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22 (2010) T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22 (2010)
215.
Zurück zum Zitat A.S. Azam, M. Boukadoum, R. Izquierdo, A. Acharya, M. Packirisamy, Integrated multifunctional fluorescence biosensor based on OLED technology, in 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference (NEWCAS-TAISA 2008) (2008), pp. 173–176 A.S. Azam, M. Boukadoum, R. Izquierdo, A. Acharya, M. Packirisamy, Integrated multifunctional fluorescence biosensor based on OLED technology, in 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference (NEWCAS-TAISA 2008) (2008), pp. 173–176
216.
Zurück zum Zitat K.L. Lin, K. Jain, Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation. IEEE Electron Device Lett. 30(1), 14–17 (2009)CrossRef K.L. Lin, K. Jain, Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation. IEEE Electron Device Lett. 30(1), 14–17 (2009)CrossRef
217.
Zurück zum Zitat K.-S. Kim, K.-H. Jung, S.-B. Jung, Design and fabrication of screen-printed silver circuits for stretchable electronics. Microelectron. Eng. 120, 216–220 (2014)CrossRef K.-S. Kim, K.-H. Jung, S.-B. Jung, Design and fabrication of screen-printed silver circuits for stretchable electronics. Microelectron. Eng. 120, 216–220 (2014)CrossRef
218.
Zurück zum Zitat H.J. Kim, T. Maleki, P. Wei, B. Ziaie, A Biaxial Stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromechanical Syst. 18(1), 138–146 (2009)CrossRef H.J. Kim, T. Maleki, P. Wei, B. Ziaie, A Biaxial Stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromechanical Syst. 18(1), 138–146 (2009)CrossRef
219.
Zurück zum Zitat H. Hocheng, C.-M. Chen, Design, fabrication and failure analysis of stretchable electrical routings. Sensors 14(7), 11855–11877 (2014)CrossRef H. Hocheng, C.-M. Chen, Design, fabrication and failure analysis of stretchable electrical routings. Sensors 14(7), 11855–11877 (2014)CrossRef
220.
Zurück zum Zitat T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27(22), 3349–3376 (2015)CrossRef T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27(22), 3349–3376 (2015)CrossRef
221.
Zurück zum Zitat Y. Zhang et al., Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24(14), 2028–2037 (2014)CrossRef Y. Zhang et al., Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24(14), 2028–2037 (2014)CrossRef
222.
Zurück zum Zitat J. Lee et al., Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23(8), 986–991 (2011)CrossRef J. Lee et al., Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23(8), 986–991 (2011)CrossRef
223.
Zurück zum Zitat C. Yu, H. Jiang, Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films 519(2), 818–822 (2010)CrossRef C. Yu, H. Jiang, Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films 519(2), 818–822 (2010)CrossRef
224.
Zurück zum Zitat S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25(4), 179–181 (2004)CrossRef S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25(4), 179–181 (2004)CrossRef
225.
Zurück zum Zitat Y.Y. Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, I.D. Wolf, Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans. Electron Devices 58(8), 2680–2688 (2011)CrossRef Y.Y. Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, I.D. Wolf, Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans. Electron Devices 58(8), 2680–2688 (2011)CrossRef
226.
Zurück zum Zitat Y. Zhang et al., Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9(33), 8062–8070 (2013)CrossRef Y. Zhang et al., Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9(33), 8062–8070 (2013)CrossRef
227.
Zurück zum Zitat Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I. De Wolf, The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnects. Thin Solid Films 519(7), 2225–2234 (2011)CrossRef Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I. De Wolf, The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnects. Thin Solid Films 519(7), 2225–2234 (2011)CrossRef
228.
Zurück zum Zitat Mario Gonzalez, Fabrice Axisa, Frederick Bossuyt, Yung-Yu. Hsu, Bart Vandevelde, Jan Vanfleteren, Design and performance of metal conductors for stretchable electronic circuits. Circuit World 35(1), 22–29 (2009)CrossRef Mario Gonzalez, Fabrice Axisa, Frederick Bossuyt, Yung-Yu. Hsu, Bart Vandevelde, Jan Vanfleteren, Design and performance of metal conductors for stretchable electronic circuits. Circuit World 35(1), 22–29 (2009)CrossRef
229.
Zurück zum Zitat M. Gonzalez, F. Axisa, M.V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48(6), 825–832 (2008)CrossRef M. Gonzalez, F. Axisa, M.V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48(6), 825–832 (2008)CrossRef
230.
Zurück zum Zitat O. van der Sluis, Y.Y. Hsu, P.H.M. Timmermans, M. Gonzalez, J.P.M. Hoefnagels, Stretching-induced interconnect delamination in stretchable electronic circuits. J. Phys. Appl. Phys. 44(3), 034008 (2011)CrossRef O. van der Sluis, Y.Y. Hsu, P.H.M. Timmermans, M. Gonzalez, J.P.M. Hoefnagels, Stretching-induced interconnect delamination in stretchable electronic circuits. J. Phys. Appl. Phys. 44(3), 034008 (2011)CrossRef
231.
Zurück zum Zitat S. Xu et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)CrossRef S. Xu et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)CrossRef
232.
Zurück zum Zitat Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I.D. Wolf, The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromechanics Microengineering 20(7), 075036 (2010)CrossRef Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I.D. Wolf, The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromechanics Microengineering 20(7), 075036 (2010)CrossRef
233.
Zurück zum Zitat D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)CrossRef D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)CrossRef
234.
Zurück zum Zitat A.M. Hussain, E.B. Lizardo, G.A. Torres Sevilla, J.M. Nassar, M.M. Hussain, Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy. Adv. Healthcare Mater. 4(5), 665–673 (2015)CrossRef A.M. Hussain, E.B. Lizardo, G.A. Torres Sevilla, J.M. Nassar, M.M. Hussain, Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy. Adv. Healthcare Mater. 4(5), 665–673 (2015)CrossRef
235.
Zurück zum Zitat J.A. Fan et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014) J.A. Fan et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)
236.
Zurück zum Zitat L. Bowman, J.D. Meindl, The packaging of implantable integrated sensors. IEEE Trans. Biomed. Eng. BME-33(2), 248–255 (1986) L. Bowman, J.D. Meindl, The packaging of implantable integrated sensors. IEEE Trans. Biomed. Eng. BME-33(2), 248–255 (1986)
237.
Zurück zum Zitat D.F. Williams, Biocompatibility of Clinical Implant Materials (CRC Press, Boca Raton, 1981) D.F. Williams, Biocompatibility of Clinical Implant Materials (CRC Press, Boca Raton, 1981)
238.
Zurück zum Zitat G. Jiang, D.D. Zhou, Technology advances and challenges in hermetic packaging for implantable medical devices, in Implantable Neural Prostheses 2, ed. by D. Zhou, E. Greenbaum (Springer, New York, 2009), pp. 27–61CrossRef G. Jiang, D.D. Zhou, Technology advances and challenges in hermetic packaging for implantable medical devices, in Implantable Neural Prostheses 2, ed. by D. Zhou, E. Greenbaum (Springer, New York, 2009), pp. 27–61CrossRef
239.
Zurück zum Zitat A. Cavallini et al., A subcutaneous biochip for remote monitoring of human metabolism: packaging and biocompatibility assessment. IEEE Sens. J. 15(1), 417–424 (2015)CrossRef A. Cavallini et al., A subcutaneous biochip for remote monitoring of human metabolism: packaging and biocompatibility assessment. IEEE Sens. J. 15(1), 417–424 (2015)CrossRef
240.
Zurück zum Zitat T.J. Harpster, S.A. Nikles, M.R. Dokmeci, K. Najafi, Long-term hermeticity and biological performance of anodically bonded glass-silicon implantable packages. IEEE Trans. Device Mater. Reliab. 5(3), 458–466 (2005)CrossRef T.J. Harpster, S.A. Nikles, M.R. Dokmeci, K. Najafi, Long-term hermeticity and biological performance of anodically bonded glass-silicon implantable packages. IEEE Trans. Device Mater. Reliab. 5(3), 458–466 (2005)CrossRef
241.
Zurück zum Zitat K. Najafi, Packaging of implantable microsystems, in 2007 IEEE Sensors (2007), pp. 58–63 K. Najafi, Packaging of implantable microsystems, in 2007 IEEE Sensors (2007), pp. 58–63
242.
Zurück zum Zitat K. Najafi, in Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS (2003), pp. 1–19 K. Najafi, in Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS (2003), pp. 1–19
243.
Zurück zum Zitat T.J. Harpster, S. Hauvespre, M.R. Dokmeci, K. Najafi, A passive humidity monitoring system for in situ remote wireless testing of micropackages. J. Microelectromechanical Syst. 11(1), 61–67 (2002)CrossRef T.J. Harpster, S. Hauvespre, M.R. Dokmeci, K. Najafi, A passive humidity monitoring system for in situ remote wireless testing of micropackages. J. Microelectromechanical Syst. 11(1), 61–67 (2002)CrossRef
244.
Zurück zum Zitat T. Stieglitz, Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst. Technol. 16(5), 723–734 (2010)CrossRef T. Stieglitz, Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst. Technol. 16(5), 723–734 (2010)CrossRef
245.
Zurück zum Zitat M. Schuettler, J.S. Ordonez, T.S. Santisteban, A. Schatz, J. Wilde, T. Stieglitz, Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 1585–1588 M. Schuettler, J.S. Ordonez, T.S. Santisteban, A. Schatz, J. Wilde, T. Stieglitz, Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 1585–1588
246.
Zurück zum Zitat M. Schuettler, A. Schatz, J.S. Ordonez, T. Stieglitz, Ensuring minimal humidity levels in hermetic implant housings, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2011), pp. 2296–2299 M. Schuettler, A. Schatz, J.S. Ordonez, T. Stieglitz, Ensuring minimal humidity levels in hermetic implant housings, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2011), pp. 2296–2299
247.
Zurück zum Zitat J.S. Ordonez, M. Schuettler, M. Ortmanns, T. Stieglitz, A 232-channel retinal vision prosthesis with a miniaturized hermetic package, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 2796–2799 J.S. Ordonez, M. Schuettler, M. Ortmanns, T. Stieglitz, A 232-channel retinal vision prosthesis with a miniaturized hermetic package, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 2796–2799
248.
Zurück zum Zitat N. Saeidi, M. Schuettler, A. Demosthenous, N. Donaldson, Technology for integrated circuit micropackages for neural interfaces, based on gold–silicon wafer bonding. J. Micromechanics Microengineering 23(7), 075021 (2013)CrossRef N. Saeidi, M. Schuettler, A. Demosthenous, N. Donaldson, Technology for integrated circuit micropackages for neural interfaces, based on gold–silicon wafer bonding. J. Micromechanics Microengineering 23(7), 075021 (2013)CrossRef
249.
Zurück zum Zitat N. Saeidi, J. Strutwolf, A. Marechal, A. Demosthenous, N. Donaldson, A capacitive humidity sensor suitable for CMOS integration. IEEE Sens. J. 13(11), 4487–4495 (2013)CrossRef N. Saeidi, J. Strutwolf, A. Marechal, A. Demosthenous, N. Donaldson, A capacitive humidity sensor suitable for CMOS integration. IEEE Sens. J. 13(11), 4487–4495 (2013)CrossRef
250.
Zurück zum Zitat N. Saeidi, A. Demosthenous, N. Donaldson, J. Alderman, Design and fabrication of corrosion and humidity sensors for performance evaluation of chip scale hermetic packages for biomedical implantable devices, in European Microelectronics and Packaging Conference 2009 (EMPC 2009) (2009), pp. 1–4 N. Saeidi, A. Demosthenous, N. Donaldson, J. Alderman, Design and fabrication of corrosion and humidity sensors for performance evaluation of chip scale hermetic packages for biomedical implantable devices, in European Microelectronics and Packaging Conference 2009 (EMPC 2009) (2009), pp. 1–4
251.
Zurück zum Zitat A. Ivorra et al., Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 19(4), 391–399 (2003)MathSciNetCrossRef A. Ivorra et al., Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 19(4), 391–399 (2003)MathSciNetCrossRef
252.
Zurück zum Zitat R. Gómez et al., A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices 8(1), 43–49 (2006)CrossRef R. Gómez et al., A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices 8(1), 43–49 (2006)CrossRef
253.
Zurück zum Zitat M. Tijero et al., SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009)CrossRef M. Tijero et al., SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009)CrossRef
254.
Zurück zum Zitat A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J. Biomed. Mater. Res. 37(3), 401–412 (1997)CrossRef A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J. Biomed. Mater. Res. 37(3), 401–412 (1997)CrossRef
255.
Zurück zum Zitat A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J. Biomed. Mater. Res. 40(4), 598–605 (1998)CrossRef A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J. Biomed. Mater. Res. 40(4), 598–605 (1998)CrossRef
256.
Zurück zum Zitat T. Trantidou, D.J. Payne, V. Tsiligkiridis, Y.-C. Chang, C. Toumazou, T. Prodromakis, The dual role of Parylene C in chemical sensing: acting as an encapsulant and as a sensing membrane for pH monitoring applications. Sens. Actuators B Chem. 186, 1–8 (2013)CrossRef T. Trantidou, D.J. Payne, V. Tsiligkiridis, Y.-C. Chang, C. Toumazou, T. Prodromakis, The dual role of Parylene C in chemical sensing: acting as an encapsulant and as a sensing membrane for pH monitoring applications. Sens. Actuators B Chem. 186, 1–8 (2013)CrossRef
257.
Zurück zum Zitat G.S. Prihandana et al., Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices. J. Biomed. Mater. Res. B Appl. Biomater. 103(6), 1180–1187 (2015)CrossRef G.S. Prihandana et al., Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices. J. Biomed. Mater. Res. B Appl. Biomater. 103(6), 1180–1187 (2015)CrossRef
258.
Zurück zum Zitat M.M.R. Howlader, A.U. Alam, R.P. Sharma, M.J. Deen, Materials analyses and electrochemical impedance of implantable metal electrodes. Phys. Chem. Chem. Phys. 17(15), 10135–10145 (2015)CrossRef M.M.R. Howlader, A.U. Alam, R.P. Sharma, M.J. Deen, Materials analyses and electrochemical impedance of implantable metal electrodes. Phys. Chem. Chem. Phys. 17(15), 10135–10145 (2015)CrossRef
259.
Zurück zum Zitat M. Schuettler, T. Stieglitz, Microassembly and micropackaging of implantable systems, in Implantable Sensor Systems for Medical Applications (Woodhead Publishing, Oxford, 2013), pp. 108–149 M. Schuettler, T. Stieglitz, Microassembly and micropackaging of implantable systems, in Implantable Sensor Systems for Medical Applications (Woodhead Publishing, Oxford, 2013), pp. 108–149
260.
Zurück zum Zitat M. Dokmeci, K. Najafi, A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages. J. Microelectromechanical Syst. 10(2), 197–204 (2001)CrossRef M. Dokmeci, K. Najafi, A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages. J. Microelectromechanical Syst. 10(2), 197–204 (2001)CrossRef
261.
Zurück zum Zitat D. Cirmirakis, A. Demosthenous, N. Saeidi, N. Donaldson, Humidity-to-Frequency sensor in cmos technology with wireless readout. IEEE Sens. J. 13(3), 900–908 (2013)CrossRef D. Cirmirakis, A. Demosthenous, N. Saeidi, N. Donaldson, Humidity-to-Frequency sensor in cmos technology with wireless readout. IEEE Sens. J. 13(3), 900–908 (2013)CrossRef
262.
Zurück zum Zitat G.S. Wilson, M. Ammam, In vivo biosensors. FEBS J. 274(21), 5452–5461 (2007)CrossRef G.S. Wilson, M. Ammam, In vivo biosensors. FEBS J. 274(21), 5452–5461 (2007)CrossRef
263.
Zurück zum Zitat G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)CrossRef G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)CrossRef
264.
Zurück zum Zitat S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)CrossRef S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)CrossRef
265.
Zurück zum Zitat C.N. Kotanen, A. Guiseppi-Elie, Monitoring systems and quantitative measurement of biomolecules for the management of Trauma. Biomed. Microdevices 15(3), 561–577 (2013)CrossRef C.N. Kotanen, A. Guiseppi-Elie, Monitoring systems and quantitative measurement of biomolecules for the management of Trauma. Biomed. Microdevices 15(3), 561–577 (2013)CrossRef
266.
Zurück zum Zitat J.H. Shin, M.H. Schoenfisch, Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst 131(5), 609–615 (2006)CrossRef J.H. Shin, M.H. Schoenfisch, Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst 131(5), 609–615 (2006)CrossRef
267.
Zurück zum Zitat M. Frost, M.E. Meyerhoff, In vivo chemical sensors: tackling biocompatibility. Anal. Chem. 78(21), 7370–7377 (2006)CrossRef M. Frost, M.E. Meyerhoff, In vivo chemical sensors: tackling biocompatibility. Anal. Chem. 78(21), 7370–7377 (2006)CrossRef
268.
Zurück zum Zitat Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D.J. Burgess, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2(6), 1003–1015 (2008)CrossRef Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D.J. Burgess, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2(6), 1003–1015 (2008)CrossRef
269.
Zurück zum Zitat L.A. Geddes, R. Roeder, Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng. 31(7), 879–890 (2003) L.A. Geddes, R. Roeder, Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng. 31(7), 879–890 (2003)
270.
Zurück zum Zitat A. Radu et al., Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Anal. Methods 2(10), 1490–1498 (2010)CrossRef A. Radu et al., Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Anal. Methods 2(10), 1490–1498 (2010)CrossRef
271.
Zurück zum Zitat R.C. Mercado, F. Moussy, In vitro and in vivo mineralization of Nafion membrane used for implantable glucose sensors. Biosens. Bioelectron. 13(2), 133–145 (1998)CrossRef R.C. Mercado, F. Moussy, In vitro and in vivo mineralization of Nafion membrane used for implantable glucose sensors. Biosens. Bioelectron. 13(2), 133–145 (1998)CrossRef
272.
Zurück zum Zitat S.R. Shah, A.M. Tatara, R.N. D’Souza, A.G. Mikos, F.K. Kasper, Evolving strategies for preventing biofilm on implantable materials. Mater. Today 16(5), 177–182 (2013)CrossRef S.R. Shah, A.M. Tatara, R.N. D’Souza, A.G. Mikos, F.K. Kasper, Evolving strategies for preventing biofilm on implantable materials. Mater. Today 16(5), 177–182 (2013)CrossRef
273.
Zurück zum Zitat J.D. Patel, M. Ebert, R. Ward, J.M. Anderson, S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J. Biomed. Mater. Res. A 80A(3), 742–751 (2007)CrossRef J.D. Patel, M. Ebert, R. Ward, J.M. Anderson, S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J. Biomed. Mater. Res. A 80A(3), 742–751 (2007)CrossRef
274.
Zurück zum Zitat E.M. Hetrick, M.H. Schoenfisch, Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35(9), 780–789 (2006)CrossRef E.M. Hetrick, M.H. Schoenfisch, Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35(9), 780–789 (2006)CrossRef
275.
Zurück zum Zitat J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res. 31(1), 81–110 (2001)CrossRef J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res. 31(1), 81–110 (2001)CrossRef
276.
Zurück zum Zitat J.A. Jones et al., Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A 83A(3), 585–596 (2007)CrossRef J.A. Jones et al., Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A 83A(3), 585–596 (2007)CrossRef
277.
Zurück zum Zitat E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure—property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18), 5605–5620 (2001)CrossRef E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure—property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18), 5605–5620 (2001)CrossRef
278.
Zurück zum Zitat N. Tirelli, M.P. Lutolf, A. Napoli, J.A. Hubbell, Poly(ethylene glycol) block copolymers. Rev. Mol. Biotechnol. 90(1), 3–15 (2002)CrossRef N. Tirelli, M.P. Lutolf, A. Napoli, J.A. Hubbell, Poly(ethylene glycol) block copolymers. Rev. Mol. Biotechnol. 90(1), 3–15 (2002)CrossRef
279.
Zurück zum Zitat I.A. Silver, R.J. Murrills, D.J. Etherington, Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175(2), 266–276 (1988)CrossRef I.A. Silver, R.J. Murrills, D.J. Etherington, Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175(2), 266–276 (1988)CrossRef
280.
Zurück zum Zitat A. Koh, S.P. Nichols, M.H. Schoenfisch, Glucose sensor membranes for mitigating the foreign body response. J. Diabetes Sci. Technol. 5(5), 1052–1059 (2011)CrossRef A. Koh, S.P. Nichols, M.H. Schoenfisch, Glucose sensor membranes for mitigating the foreign body response. J. Diabetes Sci. Technol. 5(5), 1052–1059 (2011)CrossRef
281.
Zurück zum Zitat R.D. Jayant, M.J. McShane, R. Srivastava, In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int. J. Pharm. 403(1–2), 268–275 (2011)CrossRef R.D. Jayant, M.J. McShane, R. Srivastava, In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int. J. Pharm. 403(1–2), 268–275 (2011)CrossRef
282.
Zurück zum Zitat Y. Wang, F. Papadimitrakopoulos, D.J. Burgess, Polymeric ‘smart’ coatings to prevent foreign body response to implantable biosensors. J. Controlled Release 169(3), 341–347 (2013)CrossRef Y. Wang, F. Papadimitrakopoulos, D.J. Burgess, Polymeric ‘smart’ coatings to prevent foreign body response to implantable biosensors. J. Controlled Release 169(3), 341–347 (2013)CrossRef
283.
Zurück zum Zitat J.H. Shin, S.M. Marxer, M.H. Schoenfisch, Nitric oxide-releasing sol–gel particle/polyurethane glucose biosensors. Anal. Chem. 76(15), 4543–4549 (2004)CrossRef J.H. Shin, S.M. Marxer, M.H. Schoenfisch, Nitric oxide-releasing sol–gel particle/polyurethane glucose biosensors. Anal. Chem. 76(15), 4543–4549 (2004)CrossRef
284.
Zurück zum Zitat G.S. Wilson, M.A. Johnson, In-vivo electrochemistry: what can we learn about living systems?. Chem. Rev. 108(7), 2462–2481 (2008) G.S. Wilson, M.A. Johnson, In-vivo electrochemistry: what can we learn about living systems?. Chem. Rev. 108(7), 2462–2481 (2008)
285.
Zurück zum Zitat D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39(2), 266–276 (1998)CrossRef D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39(2), 266–276 (1998)CrossRef
286.
Zurück zum Zitat B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6(1), 41–75 (2004)CrossRef B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6(1), 41–75 (2004)CrossRef
287.
Zurück zum Zitat Use of International Standard ISO 10993-1, ‘Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process’: Guidance for Industry and Food and Drug Administration Staff. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, 16 June 2016 Use of International Standard ISO 10993-1, ‘Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process’: Guidance for Industry and Food and Drug Administration Staff. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, 16 June 2016
Metadaten
Titel
Sensor Embodiment and Flexible Electronics
verfasst von
P. Kassanos
S. Anastasova
C. M. Chen
Guang-Zhong Yang
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69748-2_4