Skip to main content
Erschienen in:

05.12.2022

Sentiment Analysis and Topic Mining Using a Novel Deep Attention-Based Parallel Dual-Channel Model for Online Course Reviews

verfasst von: Chun Yan, Jiahui Liu, Wei Liu, Xinhong Liu

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sentiment analysis and topic mining of course reviews are helpful for course improvement and development. In order to improve the quality of online teaching and effectively mine the information such as sentiments contained in course reviews, a novel Deep Attention-based Parallel Dual-Channel Model (DAPDM) is proposed by combining deep learning neural network algorithms. Bidirectional Encoder Representation from Transformers (BERT) is used to train word vectors. Convolutional neural network (CNN) and bi-directional long short-term memory (BiLSTM) with attention mechanism are used to form a dual-channel model to extract sentiment features and enrich semantics. Firstly, a total of 48,501 online course reviews are selected for experiment and analysis. BERT is also used for data enhancement to obtain balanced data. And the data are substituted into DAPDM and 8 other comparative models to verify the model performance. Secondly, the student-course-institution tripartite graph relationship network and the different sentiment feature words co-occurrence network are constructed and visualized to further study the internal relationship among students, courses, and institutions. Finally, the latent dirichlet allocation (LDA) model is used to extract concerns of different sentiments. The classification accuracy, the macro-average of F1 and the weighted average of F1 on DAPDM are respectively improved to 89.44%, 0.8195, and 0.8939 compared with the comparison model. And its receiver operating characteristic (ROC) curve results are optimal. The relationship network can uncover the most popular courses and institutions, and discover that courses serve as a bridge between students and institutions. It is also found that learners’ reviews mainly focus on the course content, technical content, difficulty degree, teachers’ teaching level, etc., which are also the main factors affecting the course learners’ satisfaction with the course. The study can provide theoretical and technical support for the specification and development of online courses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Movassagh AA, Alzubi JA, Gheisari M, Rahimi M, Mohan S, Abbasi AA, Nabipour N. Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Humaniz Comput. 2021;1–9. https://doi.org/10.1007/s12652-020-02623-6. Movassagh AA, Alzubi JA, Gheisari M, Rahimi M, Mohan S, Abbasi AA, Nabipour N. Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Humaniz Comput. 2021;1–9. https://​doi.​org/​10.​1007/​s12652-020-02623-6.
24.
Zurück zum Zitat Liu Y, Zhao Y. Sentiment analysis of Chinese short text based on teaching evaluation. Mod Electron Technol. 2019;42(06):30–33+37. Liu Y, Zhao Y. Sentiment analysis of Chinese short text based on teaching evaluation. Mod Electron Technol. 2019;42(06):30–33+37.
28.
33.
Zurück zum Zitat Osmanoglu UÖ, Atak ON, Çağlar K, Kayhan H, Can TC. Sentiment analysis for distance education course materials: a machine learning approach. Journal of Educational Technology and Online Learning. 2020;3(1):31–48. https://doi.org/10.31681/jetol.663733. Osmanoglu UÖ, Atak ON, Çağlar K, Kayhan H, Can TC. Sentiment analysis for distance education course materials: a machine learning approach. Journal of Educational Technology and Online Learning. 2020;3(1):31–48. https://​doi.​org/​10.​31681/​jetol.​663733.
42.
Zurück zum Zitat Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). ACL, Stroudsburg; 2014. pp. 1746–1751. https://doi.org/10.3115/v1/D14-1181. Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). ACL, Stroudsburg; 2014. pp. 1746–1751. https://​doi.​org/​10.​3115/​v1/​D14-1181.
43.
Zurück zum Zitat Johnson R, Zhang T. Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, Canada; 2017. pp. 562–570. https://doi.org/10.18653/v1/P17-1052. Johnson R, Zhang T. Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, Canada; 2017. pp. 562–570. https://​doi.​org/​10.​18653/​v1/​P17-1052.
44.
Zurück zum Zitat Lai S, Xu L, Liu K, Zhao J. Recurrent convolutional neural networks for text classification. In: Twenty-ninth AAAI Conference on Artificial Intelligence. AAAI; 2015. pp. 2267–2273. Lai S, Xu L, Liu K, Zhao J. Recurrent convolutional neural networks for text classification. In: Twenty-ninth AAAI Conference on Artificial Intelligence. AAAI; 2015. pp. 2267–2273.
Metadaten
Titel
Sentiment Analysis and Topic Mining Using a Novel Deep Attention-Based Parallel Dual-Channel Model for Online Course Reviews
verfasst von
Chun Yan
Jiahui Liu
Wei Liu
Xinhong Liu
Publikationsdatum
05.12.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10083-7