Skip to main content

2024 | OriginalPaper | Buchkapitel

Sentiment Analysis of Tweets Associated with Turkey-Syria Earthquakes 2023

verfasst von : Harkiran Kaur, Pritika Sharma, Sahil Kadiyan

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recent world consistency is based on perceptions of people rather than people themselves. These days, the search for reliable information about natural disasters and events has become prevalent on social media sites. Hence, platforms like Twitter act as an essential tool to disseminate information and mobilize support during crises. This research study aims to investigate the sentiments and emotions of the tweets in the context of the Turkey-Syria Earthquakes of 2023. The researchers collected a dataset of tweets using relevant hashtags and keywords, labelled the dataset using stacking classifier with TextBlob, Valence Aware Dictionary, and Flair for Sentiment Reasoning, using Random Forest, Logistic Regression, Decision Tree, XGBoost, and Naïve Bayes as the base estimators. The data was analyzed using various machine learning models and deep learning architectures. All the models were compared in an analysis, thus it may be said that the Convolutional Neural Network has the highest validation accuracy followed by Support Vector Classifier and Naive Bayesian achieving the lowest, i.e., 98.1%, 97.7%, and 84.7%, respectively. The study also found that the most common emotions are ‘unemotional’ and ‘disgust’ in the tweets using stacking classifiers with TextBlob, Valence Aware Dictionary, and Wordnet. The studies reviewed in this literature review demonstrate the effectiveness of machine learning algorithms and features for sentiment analysis on current affairs and highlight the importance of considering the linguistic and cultural context of the text. However, there are still challenges to be addressed, such as dealing with noisy and biased data, adapting to different languages and domains, and handling context-dependent sentiment expressions. In addition, further research is required to improve the accuracy of sentiment analysis and to explore the use of other factors such as context, sarcasm, and irony.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Khan, R., Rustam, F., Kanwal, K., Mehmood, A., Choi, G.S.: US based COVID-19 tweets sentiment analysis using TextBlob and supervised machine learning algorithms. In: International Conference on Artificial Intelligence (ICAI) (2021) Khan, R., Rustam, F., Kanwal, K., Mehmood, A., Choi, G.S.: US based COVID-19 tweets sentiment analysis using TextBlob and supervised machine learning algorithms. In: International Conference on Artificial Intelligence (ICAI) (2021)
3.
Zurück zum Zitat Pai, A.R., Prince, M., Prasannakumar, C.V.: Real-time Twitter sentiment analytics and visualization using Vader. In: 2nd International Conference on Intelligent Technologies (CONIT) (2022) Pai, A.R., Prince, M., Prasannakumar, C.V.: Real-time Twitter sentiment analytics and visualization using Vader. In: 2nd International Conference on Intelligent Technologies (CONIT) (2022)
4.
Zurück zum Zitat Liu, Y., Hu, Y., Li, X.: Sentiment analysis of social media users towards COVID-19 pandemic. In: 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 329–335. IEEE (2023) Liu, Y., Hu, Y., Li, X.: Sentiment analysis of social media users towards COVID-19 pandemic. In: 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 329–335. IEEE (2023)
5.
Zurück zum Zitat Jha, S., Singh, R., Kumari, P.: Sentiment analysis of climate change crisis using deep learning. In: 2023 IEEE 13th International Conference on Intelligent Systems and Control (ISCO), pp. 437–442. IEEE (2023) Jha, S., Singh, R., Kumari, P.: Sentiment analysis of climate change crisis using deep learning. In: 2023 IEEE 13th International Conference on Intelligent Systems and Control (ISCO), pp. 437–442. IEEE (2023)
6.
Zurück zum Zitat Wang, L., Zhang, Y., Li, Z.: Sentiment analysis of financial news using deep learning. In: 2023 IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 225–231. IEEE (2023) Wang, L., Zhang, Y., Li, Z.: Sentiment analysis of financial news using deep learning. In: 2023 IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 225–231. IEEE (2023)
7.
Zurück zum Zitat Gupta, R., Sharma, V., Sharma, P.: Comparative analysis of machine learning techniques for news sentiment analysis. In: 2023 International Conference on Innovative Computing and Communication (ICICC), pp. 362–367. IEEE (2023) Gupta, R., Sharma, V., Sharma, P.: Comparative analysis of machine learning techniques for news sentiment analysis. In: 2023 International Conference on Innovative Computing and Communication (ICICC), pp. 362–367. IEEE (2023)
8.
Zurück zum Zitat Kim, J., Lee, J., Kim, D.: Sentiment analysis using graph convolutional networks on news articles related to the COVID-19 pandemic. J. Inf. Sci. 49(2), 199–213 (2023) Kim, J., Lee, J., Kim, D.: Sentiment analysis using graph convolutional networks on news articles related to the COVID-19 pandemic. J. Inf. Sci. 49(2), 199–213 (2023)
9.
Zurück zum Zitat Kwon, O., Lee, J., Lee, S.: Domain adaptation for sentiment analysis on social media data related to the 2022 Winter Olympics. Inf. Process. Manage. 59(2), 102814 (2023) Kwon, O., Lee, J., Lee, S.: Domain adaptation for sentiment analysis on social media data related to the 2022 Winter Olympics. Inf. Process. Manage. 59(2), 102814 (2023)
10.
Zurück zum Zitat Li, Z., Chen, X., Guo, D.: Attention-based sentiment analysis on Twitter data related to the ongoing conflict in Syria. Knowl.-Based Syst. 236, 107287 (2023) Li, Z., Chen, X., Guo, D.: Attention-based sentiment analysis on Twitter data related to the ongoing conflict in Syria. Knowl.-Based Syst. 236, 107287 (2023)
11.
Zurück zum Zitat Wang, Q., Zhai, Y., Cui, G.: Multi-task learning for sentiment analysis and entity recognition on news articles related to climate change. Inf. Sci. 618, 299–308 (2023) Wang, Q., Zhai, Y., Cui, G.: Multi-task learning for sentiment analysis and entity recognition on news articles related to climate change. Inf. Sci. 618, 299–308 (2023)
12.
Zurück zum Zitat Zhou, Y., Wu, D., Li, J.: Deep neural networks for sentiment analysis on Chinese social media data related to the trade war between China and the United States. Inf. Process. Manage. 60(1), 102654 (2023) Zhou, Y., Wu, D., Li, J.: Deep neural networks for sentiment analysis on Chinese social media data related to the trade war between China and the United States. Inf. Process. Manage. 60(1), 102654 (2023)
13.
Zurück zum Zitat Djordjevic, V., Ivanovic, M., Delic, V.: Multi-level ensemble learning for sentiment analysis of Twitter data during the US presidential election. Expert Syst. Appl. 190, 115487 (2022) Djordjevic, V., Ivanovic, M., Delic, V.: Multi-level ensemble learning for sentiment analysis of Twitter data during the US presidential election. Expert Syst. Appl. 190, 115487 (2022)
14.
Zurück zum Zitat Malik, M.A., Mirza, A.M., Raza, A.: Domain adaptation for sentiment analysis of political speeches. J. Ambient. Intell. Humaniz. Comput. 13(3), 2683–2693 (2022) Malik, M.A., Mirza, A.M., Raza, A.: Domain adaptation for sentiment analysis of political speeches. J. Ambient. Intell. Humaniz. Comput. 13(3), 2683–2693 (2022)
15.
Zurück zum Zitat Rahmadhani, R., Fitriyani, N.L.: Sentiment analysis using transfer learning on Indonesian news articles related to the presidential election. J. Phys: Conf. Ser. 2036, 012033 (2022) Rahmadhani, R., Fitriyani, N.L.: Sentiment analysis using transfer learning on Indonesian news articles related to the presidential election. J. Phys: Conf. Ser. 2036, 012033 (2022)
16.
Zurück zum Zitat Wu, X., Liu, Y., Zhang, C., Zhang, J.: Attention-based LSTM model for sentiment analysis of Chinese news articles related to the Belt and Road Initiative. J. Intell. Fuzzy Syst. 42(3), 3423–3433 (2022) Wu, X., Liu, Y., Zhang, C., Zhang, J.: Attention-based LSTM model for sentiment analysis of Chinese news articles related to the Belt and Road Initiative. J. Intell. Fuzzy Syst. 42(3), 3423–3433 (2022)
17.
Zurück zum Zitat Zhang, J., Li, Z., Liu, C., Wang, B.: A deep learning-based approach for sentiment analysis on social media data related to COVID-19. J. Ambient. Intell. Humaniz. Comput. 13(1), 463–474 (2022) Zhang, J., Li, Z., Liu, C., Wang, B.: A deep learning-based approach for sentiment analysis on social media data related to COVID-19. J. Ambient. Intell. Humaniz. Comput. 13(1), 463–474 (2022)
Metadaten
Titel
Sentiment Analysis of Tweets Associated with Turkey-Syria Earthquakes 2023
verfasst von
Harkiran Kaur
Pritika Sharma
Sahil Kadiyan
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_36