Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

18.05.2018 | Regular Paper | Ausgabe 2/2019

Knowledge and Information Systems 2/2019

Sentiment analysis using semantic similarity and Hadoop MapReduce

Zeitschrift:
Knowledge and Information Systems > Ausgabe 2/2019
Autoren:
Youness Madani, Mohammed Erritali, Jamaa Bengourram
Wichtige Hinweise
Youness Madani, Mohammed Erritali and Jamaa Bengourram have contributed equally to this work.

Abstract

Sentiment analysis or opinion mining is a domain that analyses people’s opinions, sentiments, evaluations, attitudes, and emotions from a written language; it had become a very active area of scientific research in recent years, especially with the development of social networks like Facebook and Twitter. In this paper we propose two new approaches to classify the tweets (look for the feeling expressed in the tweet), the first according to three classes : negative, positive or neutral, and the second according to two classes : negative or positive. Our first method consists in calculating the semantic similarity between the tweet to classify and three documents where each document represents a class (contains the words that represent a class); after the calculation of the similarity, the tweet takes the class of the document that has the greatest value of the semantic similarity with it. And the second method consists in calculating the semantic similarity between each word of the tweet to classify and the words “positive” and “negative” by proposing a new formula. We decide to do the analysis in a parallel and distributed way, using the Hadoop framework with the Hadoop distributed file system (HDFS) and the programming model MapReduce to solve the problem of the calculation time of the analysis if the dataset of the tweets is very large. The aim of our work is to combine between several domains, the information retrieval, semantic similarity, opinion mining or sentiment analysis and big data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2019

Knowledge and Information Systems 2/2019 Zur Ausgabe

Premium Partner

    Bildnachweise