Skip to main content
Erschienen in:

2019 | OriginalPaper | Buchkapitel

Sentiment-Aware Multi-modal Recommendation on Tourist Attractions

verfasst von : Junyi Wang, Bing-Kun Bao, Changsheng Xu

Erschienen in: MultiMedia Modeling

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For tourist attraction recommendation, there are three essential aspects to be considered: tourist preferences, attraction themes, and sentiments on themes of attraction. By utilizing vast multi-modal media available on Internet, this paper is aiming to develop an efficient solution of tourist attraction recommendation covering all these three aspects. To achieve this goal, we propose a probabilistic generative model called Sentiment-aware Multi-modal Topic Model (SMTM), whose advantages are four folds: (1) we separate tourists and attractions into two domains for better recovering tourist topics and attraction themes; (2) we investigate tourists sentiments on topics to retain the preference ones; (3) the recommended attraction is guaranteed with positive sentiment on the related attraction themes; (4) the multi-modal data are utilized to enhance the recommendation accuracy. Qualitative and quantitative evaluation results have validated the effectiveness of our method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adomavicius, G., et al.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRef Adomavicius, G., et al.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRef
2.
Zurück zum Zitat Blei, D., Carin, L., Dunson, D.: Probabilistic topic models. IEEE Signal Process. Mag. 27(6), 55–65 (2010) Blei, D., Carin, L., Dunson, D.: Probabilistic topic models. IEEE Signal Process. Mag. 27(6), 55–65 (2010)
3.
Zurück zum Zitat Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 127–134 (2013) Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 127–134 (2013)
4.
Zurück zum Zitat Huang, C., Wang, Q., Yang, D., et al.: Topic mining of tourist attractions based on a seasonal context aware LDA model. Intell. Data Anal. 22(2), 383–405 (2018)CrossRef Huang, C., Wang, Q., Yang, D., et al.: Topic mining of tourist attractions based on a seasonal context aware LDA model. Intell. Data Anal. 22(2), 383–405 (2018)CrossRef
5.
Zurück zum Zitat Bao, B.K., Xu, C., Min, W., Hossain, M.S.: Cross-platform emerging topic detection and elaboration from multimedia streams. TOMCCAP 11(4), 54 (2015)CrossRef Bao, B.K., Xu, C., Min, W., Hossain, M.S.: Cross-platform emerging topic detection and elaboration from multimedia streams. TOMCCAP 11(4), 54 (2015)CrossRef
6.
Zurück zum Zitat Bao, B.-K., Liu, G., Changsheng, X., Yan, S.: Inductive robust principal component analysis. IEEE Trans. Image Process. 21(8), 3794–3800 (2012)MathSciNetCrossRef Bao, B.-K., Liu, G., Changsheng, X., Yan, S.: Inductive robust principal component analysis. IEEE Trans. Image Process. 21(8), 3794–3800 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Bao, B.-K., Zhu, G., Shen, J., Yan, S.: Robust image analysis with sparse representation on quantized visual features. IEEE Trans. Image Process. 22(3), 860–871 (2013)MathSciNetCrossRef Bao, B.-K., Zhu, G., Shen, J., Yan, S.: Robust image analysis with sparse representation on quantized visual features. IEEE Trans. Image Process. 22(3), 860–871 (2013)MathSciNetCrossRef
8.
Zurück zum Zitat Borras, J., Moreno, A., Valls, A.: Intelligent tourism recommender systems: a survey. Expert Syst. Appl. 41(16), 7370–7389 (2014)CrossRef Borras, J., Moreno, A., Valls, A.: Intelligent tourism recommender systems: a survey. Expert Syst. Appl. 41(16), 7370–7389 (2014)CrossRef
9.
Zurück zum Zitat Leal, F., González–Vélez, H., Malheiro, B., Burguillo, J.C.: Semantic profiling and destination recommendation based on crowd-sourced tourist reviews. Distributed Computing and Artificial Intelligence, 14th International Conference. AISC, vol. 620, pp. 140–147. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62410-5_17CrossRef Leal, F., González–Vélez, H., Malheiro, B., Burguillo, J.C.: Semantic profiling and destination recommendation based on crowd-sourced tourist reviews. Distributed Computing and Artificial Intelligence, 14th International Conference. AISC, vol. 620, pp. 140–147. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-62410-5_​17CrossRef
10.
Zurück zum Zitat Yang, D., Zhang, D., Yu, Z., et al.: A sentiment-enhanced personalized location recommendation system. In: ACM Conference on Hypertext and Social Media, pp. 119-128. ACM (2013) Yang, D., Zhang, D., Yu, Z., et al.: A sentiment-enhanced personalized location recommendation system. In: ACM Conference on Hypertext and Social Media, pp. 119-128. ACM (2013)
11.
Zurück zum Zitat Shen, J., Deng, C., Gao, X.: Attraction recommendation: towards personalized tourism via collective intelligence. Neurocomputing 173, 789–798 (2016)CrossRef Shen, J., Deng, C., Gao, X.: Attraction recommendation: towards personalized tourism via collective intelligence. Neurocomputing 173, 789–798 (2016)CrossRef
12.
Zurück zum Zitat Kurashima, T., Iwata, T., Irie, G., Fujimura, K.: Travel route recommendation using geotags in photo sharing sites. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, Canada, pp. 579–588. ACM, October 2010 Kurashima, T., Iwata, T., Irie, G., Fujimura, K.: Travel route recommendation using geotags in photo sharing sites. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, Canada, pp. 579–588. ACM, October 2010
13.
Zurück zum Zitat Wu, Y., Ester, M.: FLAME: a probabilistic model combining aspect based opinion mining and collaborative filtering. In: Eighth ACM International Conference on Web Search and Data Mining, pp. 199–208. ACM (2015) Wu, Y., Ester, M.: FLAME: a probabilistic model combining aspect based opinion mining and collaborative filtering. In: Eighth ACM International Conference on Web Search and Data Mining, pp. 199–208. ACM (2015)
14.
Zurück zum Zitat Arbelaitz, O., Gurrutxaga, I., Lojo, A., Muguerza, J., Perez, J.M., Perona, I.: Web usage and content mining to extract knowledge for modelling the users of the Bidasoa Turismo website and to adapt it. Expert Syst. Appl. 40(18), 7478–7491 (2013)CrossRef Arbelaitz, O., Gurrutxaga, I., Lojo, A., Muguerza, J., Perez, J.M., Perona, I.: Web usage and content mining to extract knowledge for modelling the users of the Bidasoa Turismo website and to adapt it. Expert Syst. Appl. 40(18), 7478–7491 (2013)CrossRef
15.
Zurück zum Zitat Hao, Q., et al.: Equip tourists with knowledge mined from travelogues. In: Proceedings of the 19th International Conference on World Wide Web, pp. 401–410. ACM (2010) Hao, Q., et al.: Equip tourists with knowledge mined from travelogues. In: Proceedings of the 19th International Conference on World Wide Web, pp. 401–410. ACM (2010)
16.
Zurück zum Zitat Jiang, K., Wang, P., Yu, N.: ContextRank: personalized tourism recommendation by exploiting context information of geotagged web photos. In: 2011 Sixth International Conference on Image and Graphics, Hefei, Anhui, China, pp. 931–937. IEEE, August 2011 (2011) Jiang, K., Wang, P., Yu, N.: ContextRank: personalized tourism recommendation by exploiting context information of geotagged web photos. In: 2011 Sixth International Conference on Image and Graphics, Hefei, Anhui, China, pp. 931–937. IEEE, August 2011 (2011)
17.
Zurück zum Zitat Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J Mach. Learn. Res. 3, 993–1022 (2003)MATH Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J Mach. Learn. Res. 3, 993–1022 (2003)MATH
18.
Zurück zum Zitat Mei, Q., Ling, X., Wondra, M., et al.: Topic sentiment mixture: modeling facets and opinions in weblogs. In: Proceedings of the 16th International Conference on World Wide Web, pp. 171–180 (2007) Mei, Q., Ling, X., Wondra, M., et al.: Topic sentiment mixture: modeling facets and opinions in weblogs. In: Proceedings of the 16th International Conference on World Wide Web, pp. 171–180 (2007)
19.
Zurück zum Zitat Fang, Q., Xu, C., Sang, J., et al.: Word-of-mouth understanding: entity-centric multimodal aspect-opinion mining in social media. IEEE Trans. Multimedia 17(12), 2281–2296 (2015)CrossRef Fang, Q., Xu, C., Sang, J., et al.: Word-of-mouth understanding: entity-centric multimodal aspect-opinion mining in social media. IEEE Trans. Multimedia 17(12), 2281–2296 (2015)CrossRef
20.
Zurück zum Zitat Xiong, H., Xiong, H., Xiong, H., et al.: A location-sentiment-aware recommender system for both home-town and out-of-town users, pp. 1135–1143 (2017) Xiong, H., Xiong, H., Xiong, H., et al.: A location-sentiment-aware recommender system for both home-town and out-of-town users, pp. 1135–1143 (2017)
21.
Zurück zum Zitat Titov, I., McDonald, R.: A joint model of text and aspect ratings for sentiment summarization. In: ACL-08: HLT, pp. 308–316. Association for Computational Linguistics (2008) Titov, I., McDonald, R.: A joint model of text and aspect ratings for sentiment summarization. In: ACL-08: HLT, pp. 308–316. Association for Computational Linguistics (2008)
23.
Zurück zum Zitat Fang, Y., Si, L., Somasundaram, N. Yu, Z.: Mining contrastive opinions on political texts using cross-perspective topic model. In: Proceedings of the fifth ACM international conference on Web search and data mining, pp. 63–72. ACM (2012) Fang, Y., Si, L., Somasundaram, N. Yu, Z.: Mining contrastive opinions on political texts using cross-perspective topic model. In: Proceedings of the fifth ACM international conference on Web search and data mining, pp. 63–72. ACM (2012)
24.
Zurück zum Zitat Lin, C., He, Y., Everson, R., et al.: Weakly supervised joint sentiment-topic detection from text. IEEE T. Knowl. Data En. 24(6), 1134–1145 (2012)CrossRef Lin, C., He, Y., Everson, R., et al.: Weakly supervised joint sentiment-topic detection from text. IEEE T. Knowl. Data En. 24(6), 1134–1145 (2012)CrossRef
25.
Zurück zum Zitat Qian, S., Zhang, T., Xu, C., et al.: Multi-modal event topic model for social event analysis. IEEE Trans. Multimedia 18(2), 233–246 (2016)CrossRef Qian, S., Zhang, T., Xu, C., et al.: Multi-modal event topic model for social event analysis. IEEE Trans. Multimedia 18(2), 233–246 (2016)CrossRef
26.
Zurück zum Zitat Huang, F., Zhang, S., Zhang, J., et al.: Multimodal learning for topic sentiment analysis in microblogging. Neurocomputing 253(C), 144–153 (2017)CrossRef Huang, F., Zhang, S., Zhang, J., et al.: Multimodal learning for topic sentiment analysis in microblogging. Neurocomputing 253(C), 144–153 (2017)CrossRef
27.
Zurück zum Zitat Alam, M.H., Ryu, W.J., Lee, S.K.: Joint multi-grain topic sentiment: modeling semantic aspects for online reviews. Inf. Sci. 339, 206–223 (2016)CrossRef Alam, M.H., Ryu, W.J., Lee, S.K.: Joint multi-grain topic sentiment: modeling semantic aspects for online reviews. Inf. Sci. 339, 206–223 (2016)CrossRef
28.
Zurück zum Zitat Min, W., Bao, B.K., Mei, S., et al.: You are what you eat: exploring rich recipe information for cross-region food analysis. IEEE Trans. Multimed. 1 (2017) Min, W., Bao, B.K., Mei, S., et al.: You are what you eat: exploring rich recipe information for cross-region food analysis. IEEE Trans. Multimed. 1 (2017)
Metadaten
Titel
Sentiment-Aware Multi-modal Recommendation on Tourist Attractions
verfasst von
Junyi Wang
Bing-Kun Bao
Changsheng Xu
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05710-7_1