Skip to main content

05.12.2024 | Original Article

Sentiment-Based Hierarchical Deep Learning Framework Using Hybrid Optimization for Course Recommendation in E-learning

verfasst von: A. Madhavi, A. Nagesh, A. Govardhan

Erschienen in: Annals of Data Science

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Course recommendation (CD) is essential for success in a student’s educational journey. Due to the variations in student’s knowledge system, it might be difficult to select the course content from online educational platforms. This problem is overcome by introducing the Political Jellyfish search optimization (PJSO) based Hierarchical Deep Learning for Text (HDLTex) model for sentiment classification (SC) in CD. Here, the input data is taken from the E-khool database, which is subjected to the learner/course agglomerative matrix calculation. Then, the course is grouped by utilizing Bayesian Fuzzy clustering (BFC). When the query is given, bi-level matching is performed. The learner retrieves the preferred items after the best course group is found. Furthermore, course review data is applied to the tokenization process employing Bidirectional Encoder Representations from Transformers (BERT). Finally, the feature extraction is carried out and SC is performed by using HDLTex, which is trained by the proposed PJSO. Moreover, the PJSO is the incorporation of Political Optimizer (PO) and Jellyfish Search Optimization (JSO). The devised PJSO-based HDLTex has a superior assessment for maximum precision of 0.904, maximum recall of 0.915 and maximum F-Measure of 0.904 respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Olson, Louis D, Shi Y, Shi Y (2007) Introduction to business data mining. 10. McGraw-Hill/Irwin, New York Olson, Louis D, Shi Y, Shi Y (2007) Introduction to business data mining. 10. McGraw-Hill/Irwin, New York
17.
Zurück zum Zitat Almatrafi O, Parack S, Chavan B (2015) Application of location-based sentiment analysis using Twitter for identifying trends towards Indian general elections 2014. In: Proceedings of the 9th international conference on ubiquitous information management and communication. https://doi.org/10.1145/27011262701129 Almatrafi O, Parack S, Chavan B (2015) Application of location-based sentiment analysis using Twitter for identifying trends towards Indian general elections 2014. In: Proceedings of the 9th international conference on ubiquitous information management and communication. https://​doi.​org/​10.​1145/​27011262701129
25.
Zurück zum Zitat Yang L, Li Y, Wang J, Sherratt RS (2020) Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 8:23522–23530CrossRef Yang L, Li Y, Wang J, Sherratt RS (2020) Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 8:23522–23530CrossRef
26.
Zurück zum Zitat Chugh A, Sharma VK, Kumar S, Nayyar A, Qureshi B, Bhatia MK, Jain C (2021) Spider monkey crow optimization algorithm with deep learning for sentiment classification and information retrieval. IEEE Access 9:24249–24262CrossRef Chugh A, Sharma VK, Kumar S, Nayyar A, Qureshi B, Bhatia MK, Jain C (2021) Spider monkey crow optimization algorithm with deep learning for sentiment classification and information retrieval. IEEE Access 9:24249–24262CrossRef
29.
Zurück zum Zitat Zamri N, Palanichamy N, Haw S (2023) College course recommender system based on sentiment analysis. Int J Adv Sci Eng 13:1984 Zamri N, Palanichamy N, Haw S (2023) College course recommender system based on sentiment analysis. Int J Adv Sci Eng 13:1984
33.
Zurück zum Zitat Kowsari K, Brown DE, Heidarysafa M, Meimandi KJ, Gerber MS, Barnes LE (2017) Hdltex: Hierarchical deep learning for text classification. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA) 364–371. IEEE Kowsari K, Brown DE, Heidarysafa M, Meimandi KJ, Gerber MS, Barnes LE (2017) Hdltex: Hierarchical deep learning for text classification. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA) 364–371. IEEE
40.
Zurück zum Zitat E-khool learning, Assessed on February 2023 E-khool learning, Assessed on February 2023
Metadaten
Titel
Sentiment-Based Hierarchical Deep Learning Framework Using Hybrid Optimization for Course Recommendation in E-learning
verfasst von
A. Madhavi
A. Nagesh
A. Govardhan
Publikationsdatum
05.12.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00580-x