Skip to main content
Erschienen in:

01.12.2023 | Original Article

Sentiment prediction model in social media data using beluga dodger optimization-based ensemble classifier

verfasst von: Priya Vinod, S. Sheeja

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel stellt ein Sentiment Prediction Model vor, das einen auf Beluga Dodger Optimization basierenden Ensembleklassifikator zur Analyse von Twitter-Daten verwendet. Das Modell kombiniert CNN und Bi-LSTM, um eine hohe Genauigkeit bei der Stimmungsklassifizierung zu erreichen. Die vorgeschlagene Methode umfasst Vorverarbeitungsschritte wie Tokenisierung, Stopp-Wort-Entfernung, Stammeln und Lemmatisierung, gefolgt von der Feature-Extraktion mittels TF-IDF. Die Beluga Dodger Optimierung wurde entwickelt, um Konvergenz und Genauigkeit zu verbessern, indem sie das Jagdverhalten von Buckelwalen und Haien imitiert. Der Artikel vergleicht auch die Leistung der vorgeschlagenen Methode mit anderen hochmodernen Techniken und demonstriert so ihre Überlegenheit in der Stimmungsanalyse. Die Ergebnisse zeigen, dass der BD-optimierte Tiefenklassifikator hohe Genauigkeit, Sensitivität und Spezifität erreicht, was ihn zu einem wertvollen Werkzeug für die Analyse sozialer Medien macht.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abedinia O, Amjady N, Ghasemo A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5):97–116MathSciNetCrossRef Abedinia O, Amjady N, Ghasemo A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5):97–116MathSciNetCrossRef
Zurück zum Zitat Alattar F, Shaalan K (2021) Using artificial intelligence to understand what causes sentiment changes on social media. IEEE Access 9:61756–61767CrossRef Alattar F, Shaalan K (2021) Using artificial intelligence to understand what causes sentiment changes on social media. IEEE Access 9:61756–61767CrossRef
Zurück zum Zitat Alotaibi B, Abbasi RA, Aslam MA, Saeedi K, Alahmadi D (2020) Startup initiative response analysis (SIRA) framework for analyzing startup initiatives on twitter. IEEE Access 8:10718–10730CrossRef Alotaibi B, Abbasi RA, Aslam MA, Saeedi K, Alahmadi D (2020) Startup initiative response analysis (SIRA) framework for analyzing startup initiatives on twitter. IEEE Access 8:10718–10730CrossRef
Zurück zum Zitat Alsayat A (2022) Improving sentiment analysis for social media applications using an ensemble deep learning language model. Arab J Sci Eng 47(2):2499–2511CrossRef Alsayat A (2022) Improving sentiment analysis for social media applications using an ensemble deep learning language model. Arab J Sci Eng 47(2):2499–2511CrossRef
Zurück zum Zitat Al-Twairesh N, Al-Negheimish H (2019) Surface and deep features ensemble for sentiment analysis of arabic tweets. IEEE Access 7:84122–84131CrossRef Al-Twairesh N, Al-Negheimish H (2019) Surface and deep features ensemble for sentiment analysis of arabic tweets. IEEE Access 7:84122–84131CrossRef
Zurück zum Zitat Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst Appl 77(19):236–246CrossRef Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst Appl 77(19):236–246CrossRef
Zurück zum Zitat Asghar MZ, Khan A, Ahmad S, Qasim M, Khan IA (2017) Lexiconenhanced sentiment analysis framework using rule-based classification scheme. PLoS ONE 12(2). Art. no. e0171649 Asghar MZ, Khan A, Ahmad S, Qasim M, Khan IA (2017) Lexiconenhanced sentiment analysis framework using rule-based classification scheme. PLoS ONE 12(2). Art. no. e0171649
Zurück zum Zitat Babu NV, Kanaga EGM (2022) Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput Sci 3:1–20CrossRef Babu NV, Kanaga EGM (2022) Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput Sci 3:1–20CrossRef
Zurück zum Zitat Bianchi F, Nozza D, Hovy D (2022) XLM-EMO: Multilingual emotion prediction in social media text. I:n Proceedings of the 12th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 195–203 Bianchi F, Nozza D, Hovy D (2022) XLM-EMO: Multilingual emotion prediction in social media text. I:n Proceedings of the 12th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 195–203
Zurück zum Zitat Bibi M, Aziz W, Almaraashi M, Khan IH, Nadeem MSA, Habib N (2020) A cooperative binary-clustering framework based on majority voting for twitter sentiment analysis. IEEE Access 8:68580–68592CrossRef Bibi M, Aziz W, Almaraashi M, Khan IH, Nadeem MSA, Habib N (2020) A cooperative binary-clustering framework based on majority voting for twitter sentiment analysis. IEEE Access 8:68580–68592CrossRef
Zurück zum Zitat Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1–8CrossRef Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1–8CrossRef
Zurück zum Zitat Boukabous M, Azizi M (2022) Crime prediction using a hybrid sentiment analysis approach based on the bidirectional encoder representations from transformers. Indones J Electr Eng Comput Sci 25(2):1131–1139 Boukabous M, Azizi M (2022) Crime prediction using a hybrid sentiment analysis approach based on the bidirectional encoder representations from transformers. Indones J Electr Eng Comput Sci 25(2):1131–1139
Zurück zum Zitat Cambria E (2016) Affective computing and sentiment analysis. IEEE Intell Syst 31(2):102–107CrossRef Cambria E (2016) Affective computing and sentiment analysis. IEEE Intell Syst 31(2):102–107CrossRef
Zurück zum Zitat Chandrasekaran G, Antoanela N, Andrei G, Monica C, Hemanth J (2022) Visual sentiment analysis using deep learning models with social media data. Appl Sci 12(3):1030 Chandrasekaran G, Antoanela N, Andrei G, Monica C, Hemanth J (2022) Visual sentiment analysis using deep learning models with social media data. Appl Sci 12(3):1030
Zurück zum Zitat Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetCrossRef Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetCrossRef
Zurück zum Zitat D’Avanzo E, Pilato G (2015) Mining social network users opinions’ to aid buyers’ shopping decisions. Comput Hum Behav 51:1284–1294CrossRef D’Avanzo E, Pilato G (2015) Mining social network users opinions’ to aid buyers’ shopping decisions. Comput Hum Behav 51:1284–1294CrossRef
Zurück zum Zitat Dangi D, Dixit DK, Bhagat A (2022) Sentiment analysis of COVID-19 social media data through machine learning. Multimedia Tools Appl 81(29):42261–42283CrossRef Dangi D, Dixit DK, Bhagat A (2022) Sentiment analysis of COVID-19 social media data through machine learning. Multimedia Tools Appl 81(29):42261–42283CrossRef
Zurück zum Zitat Das S, Kalita HK (2017) Sentiment analysis for Web-based big data: a survey. Int J Adv Res Comput Sci 8(5):1996–1999 Das S, Kalita HK (2017) Sentiment analysis for Web-based big data: a survey. Int J Adv Res Comput Sci 8(5):1996–1999
Zurück zum Zitat Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12) Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12)
Zurück zum Zitat Hajarian M, Bastanfard A, Mohammadzadeh J, Khalilian M (2019) SNEFL: social network explicit fuzzy like dataset and its application for Incel detection. Multimedia Tools Appl 78:33457–33486CrossRef Hajarian M, Bastanfard A, Mohammadzadeh J, Khalilian M (2019) SNEFL: social network explicit fuzzy like dataset and its application for Incel detection. Multimedia Tools Appl 78:33457–33486CrossRef
Zurück zum Zitat Hu T, She B, Duan L, Yue H, Clunis J (2020) A Systematic spatial and temporal sentiment analysis on geo-tweets. IEEE Access 8:8658–8667CrossRef Hu T, She B, Duan L, Yue H, Clunis J (2020) A Systematic spatial and temporal sentiment analysis on geo-tweets. IEEE Access 8:8658–8667CrossRef
Zurück zum Zitat Ji X, Chun SA, Wei Z, Geller J (2015) Twitter sentiment classification for measuring public health concerns. Social Netw Anal Mining 5(1):13CrossRef Ji X, Chun SA, Wei Z, Geller J (2015) Twitter sentiment classification for measuring public health concerns. Social Netw Anal Mining 5(1):13CrossRef
Zurück zum Zitat Jungherr A (2016) Twitter use in election campaigns: a systematic literature review. J Inf Technol Politics 13(1):72–91CrossRef Jungherr A (2016) Twitter use in election campaigns: a systematic literature review. J Inf Technol Politics 13(1):72–91CrossRef
Zurück zum Zitat Kokab ST, Asghar S, Naz S (2022) Transformer-based deep learning models for the sentiment analysis of social media data. Array 14:100157CrossRef Kokab ST, Asghar S, Naz S (2022) Transformer-based deep learning models for the sentiment analysis of social media data. Array 14:100157CrossRef
Zurück zum Zitat Lu Q, Zhu Z, Zhang D, Wu W, Guo Q (2020) Interactive rule attention network for aspect-level sentiment analysis. IEEE Access 8:52505–52516CrossRef Lu Q, Zhu Z, Zhang D, Wu W, Guo Q (2020) Interactive rule attention network for aspect-level sentiment analysis. IEEE Access 8:52505–52516CrossRef
Zurück zum Zitat Mameli M, Paolanti M, Morbidoni C, Frontoni E, Teti A (2022) Social media analytics system for action inspection on social networks. Soc Netw Anal Min 12(1):33CrossRef Mameli M, Paolanti M, Morbidoni C, Frontoni E, Teti A (2022) Social media analytics system for action inspection on social networks. Soc Netw Anal Min 12(1):33CrossRef
Zurück zum Zitat Martinez-Camara E, Martin-Valdivia MT, Urena-Lopez LA, Montejo-Raez AR (2014) Sentiment analysis in Twitter. Natural Lang Eng 20(1):1–28CrossRef Martinez-Camara E, Martin-Valdivia MT, Urena-Lopez LA, Montejo-Raez AR (2014) Sentiment analysis in Twitter. Natural Lang Eng 20(1):1–28CrossRef
Zurück zum Zitat Menkhoff T, Chay YW, Bengtsson ML, Woodard CJ, Gan B (2015) Incorporating microblogging (‘tweeting’) in higher education: lessons learnt in a knowledge management course. Comput Hum Behav 51:1295–1302CrossRef Menkhoff T, Chay YW, Bengtsson ML, Woodard CJ, Gan B (2015) Incorporating microblogging (‘tweeting’) in higher education: lessons learnt in a knowledge management course. Comput Hum Behav 51:1295–1302CrossRef
Zurück zum Zitat Naseem U, Razzak I, Khushi M, Eklund PW, Kim J (2021) COVIDSenti: a large-scale benchmark twitter data set for COVID-19 sentiment analysis. IEEE Trans Comput Soc Syst 8(4):1003–1015CrossRef Naseem U, Razzak I, Khushi M, Eklund PW, Kim J (2021) COVIDSenti: a large-scale benchmark twitter data set for COVID-19 sentiment analysis. IEEE Trans Comput Soc Syst 8(4):1003–1015CrossRef
Zurück zum Zitat Omuya EO, Okeyo G, Kimwele M (2023) Sentiment analysis on social media tweets using dimensionality reduction and natural language processing. Eng Rep 5(3):e12579CrossRef Omuya EO, Okeyo G, Kimwele M (2023) Sentiment analysis on social media tweets using dimensionality reduction and natural language processing. Eng Rep 5(3):e12579CrossRef
Zurück zum Zitat Phan HT, Tran VC, Nguyen NT, Hwang D (2020) Improving the performance of sentiment analysis of tweets containing fuzzy sentiment using the feature ensemble model. IEEE Access 8:14630–14641CrossRef Phan HT, Tran VC, Nguyen NT, Hwang D (2020) Improving the performance of sentiment analysis of tweets containing fuzzy sentiment using the feature ensemble model. IEEE Access 8:14630–14641CrossRef
Zurück zum Zitat Pressman SD, Gallagher MW, Lopez SJ (2013) ‘Is the emotionhealth connection a ‘First-world problem?’ Psychol Sci 24(4):544–549CrossRef Pressman SD, Gallagher MW, Lopez SJ (2013) ‘Is the emotionhealth connection a ‘First-world problem?’ Psychol Sci 24(4):544–549CrossRef
Zurück zum Zitat Ruz GA, Henríquez PA, Mascareño A (2020) Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Futur Gener Comput Syst 106:92–104CrossRef Ruz GA, Henríquez PA, Mascareño A (2020) Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Futur Gener Comput Syst 106:92–104CrossRef
Zurück zum Zitat Savargiv M, Bastanfard A (2013) Text material design for fuzzy emotional speech corpus based on persian semantic and structure. In: 2013 International conference on fuzzy theory and its applications (iFUZZY) (pp. 380–384). IEEE Savargiv M, Bastanfard A (2013) Text material design for fuzzy emotional speech corpus based on persian semantic and structure. In: 2013 International conference on fuzzy theory and its applications (iFUZZY) (pp. 380–384). IEEE
Zurück zum Zitat Shelke N, Chaudhury S, Chakrabarti S, Bangare SL, Yogapriya G, Pandey P (2022) An efficient way of text-based emotion analysis from social media using LRA-DNN. Neurosci Inf, p. 100048 Shelke N, Chaudhury S, Chakrabarti S, Bangare SL, Yogapriya G, Pandey P (2022) An efficient way of text-based emotion analysis from social media using LRA-DNN. Neurosci Inf, p. 100048
Zurück zum Zitat Tighe P, Goldsmith R, Gravenstein M, Bernard H, Fillingim R (2015) The painful tweet: text, sentiment, and community structure analyses of tweets pertaining to pain. J Med Internet Res 17(4):1–19CrossRef Tighe P, Goldsmith R, Gravenstein M, Bernard H, Fillingim R (2015) The painful tweet: text, sentiment, and community structure analyses of tweets pertaining to pain. J Med Internet Res 17(4):1–19CrossRef
Zurück zum Zitat Waheeb SA, Khan NA, Shang X (2022) Topic modeling and sentiment analysis of online education in the COVID-19 era using social networks based datasets. Electronics 11(5):715 Waheeb SA, Khan NA, Shang X (2022) Topic modeling and sentiment analysis of online education in the COVID-19 era using social networks based datasets. Electronics 11(5):715
Zurück zum Zitat Wang Y (2018) Sensing human sentiment via social media images: Methodologies and applications. Ph.D. dissertation, Dept. Comput. Sci. Eng., Arizona State Univ., Phoenix, AZ, USA Wang Y (2018) Sensing human sentiment via social media images: Methodologies and applications. Ph.D. dissertation, Dept. Comput. Sci. Eng., Arizona State Univ., Phoenix, AZ, USA
Zurück zum Zitat Wang L, Niu J, Yu S (2020) SentiDiff: combining textual information and sentiment diffusion patterns for twitter sentiment analysis. IEEE Trans Knowl Data Eng 32(10):2026–2039CrossRef Wang L, Niu J, Yu S (2020) SentiDiff: combining textual information and sentiment diffusion patterns for twitter sentiment analysis. IEEE Trans Knowl Data Eng 32(10):2026–2039CrossRef
Zurück zum Zitat Xia Y, Cambria E, Hussain A, Zhao H (2015) Word polarity disambiguation using Bayesian model and opinion-level features. Cognit Comput 7(3):369–380CrossRef Xia Y, Cambria E, Hussain A, Zhao H (2015) Word polarity disambiguation using Bayesian model and opinion-level features. Cognit Comput 7(3):369–380CrossRef
Zurück zum Zitat Yu Y, Wang X (2015) World cup 2014 in the Twitter world: a big data analysis of sentiments in U.S. Sports fans’ tweets. Comput Hum Behav 48:392–400CrossRef Yu Y, Wang X (2015) World cup 2014 in the Twitter world: a big data analysis of sentiments in U.S. Sports fans’ tweets. Comput Hum Behav 48:392–400CrossRef
Zurück zum Zitat Zhou J, Jin S, Huang X (2020) ADeCNN: an improved model for aspect-level sentiment analysis based on deformable CNN and attention. IEEE Access 8:132970–132979CrossRef Zhou J, Jin S, Huang X (2020) ADeCNN: an improved model for aspect-level sentiment analysis based on deformable CNN and attention. IEEE Access 8:132970–132979CrossRef
Metadaten
Titel
Sentiment prediction model in social media data using beluga dodger optimization-based ensemble classifier
verfasst von
Priya Vinod
S. Sheeja
Publikationsdatum
01.12.2023
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2023
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01111-x