Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.01.2015 | Ausgabe 1/2015

Data Mining and Knowledge Discovery 1/2015

Sequential network change detection with its applications to ad impact relation analysis

Zeitschrift:
Data Mining and Knowledge Discovery > Ausgabe 1/2015
Autoren:
Yu Hayashi, Kenji Yamanishi
Wichtige Hinweise
Responsible editor: Eamonn Keogh.
An extended abstract appeared in Proceedings of the 12th IEEE International Conference on Data Mining (Hayashi and Yamanishi 2012).

Abstract

We are concerned with the issue of tracking changes of variable dependencies from multivariate time series. Conventionally, this issue has been addressed in the batch scenario where the whole data set is given at once, and the change detection must be done in a retrospective way. This paper addresses this issue in a sequential scenario where multivariate data are sequentially input and the detection must be done in a sequential fashion. We propose a new method for sequential tracking of variable dependencies. In it we employ a Bayesian network as a representation of variable dependencies. The key ideas of our method are: (1) we extend the theory of dynamic model selection, which has been developed in the batch-learning scenario, into the sequential setting, and apply it to our issue, (2) we conduct the change detection sequentially using dynamic programming per a window where we employ the Hoeffding’s bound to automatically determine the window size. We empirically demonstrate that our proposed method is able to perform change detection more efficiently than a conventional batch method. Further, we give a new framework of an application of variable dependency change detection, which we call Ad Impact Relation analysis (AIR). In it, we detect the time point when a commercial message advertisement has given an impact on the market and effectively visualize the impact through network changes. We employ real data sets to demonstrate the validity of AIR.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

Data Mining and Knowledge Discovery 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise