Skip to main content
Erschienen in:

01.04.2025

Service caching with multi-agent reinforcement learning in cloud-edge collaboration computing

verfasst von: Yinglong Li, Zhengjiang Zhang, Han-Chieh Chao

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel diskutiert die Herausforderungen des zentralisierten Cloud Computing bei der Handhabung verschiedener Anwendungsdienste, die zu Netzwerküberlastung und hohen Übertragungsverzögerungen führen. Es führt Edge Computing als Lösung ein, das Server in der Nähe der Benutzer einsetzt, um die Latenz zu verringern. Das Papier schlägt einen Multi-Agent-Hybrid-Algorithmus vor, der Transformer-Netzwerke integriert, um Serviceanforderungen vorherzusagen und das Service-Caching und die Ressourcenallokation zu optimieren. Der Algorithmus wurde entwickelt, um die Reaktionslatenz zu minimieren und hochmoderne Serverressourcen effizient zu nutzen. Die Autoren präsentieren umfangreiche Simulationen, um die Leistung ihres vorgeschlagenen Ansatzes zu demonstrieren und betonen seine Überlegenheit gegenüber anderen Lernmethoden zur Verstärkung im Hinblick auf Konvergenz und Service-Caching-Entscheidungen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iftikhar S, Gill SS, Song C, Xu M, Aslanpour MS, Toosi AN, Du J, Wu H, Ghosh S, Chowdhury D, et al. (2023) Ai-based fog and edge computing: A systematic review, taxonomy and future directions. Internet of Things 21:100674 Iftikhar S, Gill SS, Song C, Xu M, Aslanpour MS, Toosi AN, Du J, Wu H, Ghosh S, Chowdhury D, et al. (2023) Ai-based fog and edge computing: A systematic review, taxonomy and future directions. Internet of Things 21:100674
2.
Zurück zum Zitat Barrios C, Kumar M (2023) Service caching and computation reuse strategies at the edge: A survey. ACM Comput Surv 56(2):1–38CrossRef Barrios C, Kumar M (2023) Service caching and computation reuse strategies at the edge: A survey. ACM Comput Surv 56(2):1–38CrossRef
3.
Zurück zum Zitat Chai F, Zhang Q, Yao H, Xin X, Gao R, Guizani M (2023) Joint multi-task offloading and resource allocation for mobile edge computing systems in satellite iot. IEEE Trans Veh Technol 72(6):7783–7795CrossRef Chai F, Zhang Q, Yao H, Xin X, Gao R, Guizani M (2023) Joint multi-task offloading and resource allocation for mobile edge computing systems in satellite iot. IEEE Trans Veh Technol 72(6):7783–7795CrossRef
4.
Zurück zum Zitat Qiu T, Chi J, Zhou X, Ning Z, Atiquzzaman M, Wu DO (2020) Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Commun Surv Tutor 22(4):2462–2488CrossRef Qiu T, Chi J, Zhou X, Ning Z, Atiquzzaman M, Wu DO (2020) Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Commun Surv Tutor 22(4):2462–2488CrossRef
5.
Zurück zum Zitat Sharma M, Tomar A, Hazra A (2024) Edge computing for industry 5.0: fundamental, applications and research challenges. IEEE Internet of Things J Sharma M, Tomar A, Hazra A (2024) Edge computing for industry 5.0: fundamental, applications and research challenges. IEEE Internet of Things J
6.
Zurück zum Zitat Apat HK, Nayak R, Sahoo B (2023) A comprehensive review on internet of things application placement in fog computing environment. Internet of Things, 100866 Apat HK, Nayak R, Sahoo B (2023) A comprehensive review on internet of things application placement in fog computing environment. Internet of Things, 100866
7.
Zurück zum Zitat Ju Y, Chen Y, Cao Z, Liu L, Pei Q, Xiao M, Ota K, Dong M, Leung VC (2023) Joint secure offloading and resource allocation for vehicular edge computing network: A multi-agent deep reinforcement learning approach. IEEE Trans Intell Transport Syst 24(5):5555–5569CrossRef Ju Y, Chen Y, Cao Z, Liu L, Pei Q, Xiao M, Ota K, Dong M, Leung VC (2023) Joint secure offloading and resource allocation for vehicular edge computing network: A multi-agent deep reinforcement learning approach. IEEE Trans Intell Transport Syst 24(5):5555–5569CrossRef
8.
Zurück zum Zitat Gao H, Wang X, Wei W, Al-Dulaimi A, Xu Y (2023) Com-ddpg: Task offloading based on multiagent reinforcement learning for information-communication-enhanced mobile edge computing in the internet of vehicles. IEEE Trans Veh Technol Gao H, Wang X, Wei W, Al-Dulaimi A, Xu Y (2023) Com-ddpg: Task offloading based on multiagent reinforcement learning for information-communication-enhanced mobile edge computing in the internet of vehicles. IEEE Trans Veh Technol
9.
Zurück zum Zitat Kim M, Lee H, Hwang S, Debbah M, Lee I (2024) Cooperative multi-agent deep reinforcement learning methods for uav-aided mobile edge computing networks. IEEE Internet of Things J Kim M, Lee H, Hwang S, Debbah M, Lee I (2024) Cooperative multi-agent deep reinforcement learning methods for uav-aided mobile edge computing networks. IEEE Internet of Things J
10.
Zurück zum Zitat Tilahun FD, Abebe AT, Kang CG (2023) Multi-agent reinforcement learning for distributed resource allocation in cell-free massive mimo-enabled mobile edge computing network. IEEE Trans Veh Technol Tilahun FD, Abebe AT, Kang CG (2023) Multi-agent reinforcement learning for distributed resource allocation in cell-free massive mimo-enabled mobile edge computing network. IEEE Trans Veh Technol
11.
Zurück zum Zitat Bi S, Huang L, Zhang Y-JA (2020) Joint optimization of service caching placement and computation offloading in mobile edge computing systems. IEEE Trans Wireless Commun 19(7):4947–4963CrossRef Bi S, Huang L, Zhang Y-JA (2020) Joint optimization of service caching placement and computation offloading in mobile edge computing systems. IEEE Trans Wireless Commun 19(7):4947–4963CrossRef
12.
Zurück zum Zitat Zhou H, Zhang Z, Li D, Su Z (2022) Joint optimization of computing offloading and service caching in edge computing-based smart grid. IEEE Trans Cloud Comput 11(2):1122–1132CrossRef Zhou H, Zhang Z, Li D, Su Z (2022) Joint optimization of computing offloading and service caching in edge computing-based smart grid. IEEE Trans Cloud Comput 11(2):1122–1132CrossRef
13.
Zurück zum Zitat Xu Z, Zhou L, Chau SC-K, Liang W, Dai H, Chen L, Xu W, Xia Q, Zhou P (2022) Near-optimal and collaborative service caching in mobile edge clouds. IEEE Trans Mobile Comput 22(7):4070–4085CrossRef Xu Z, Zhou L, Chau SC-K, Liang W, Dai H, Chen L, Xu W, Xia Q, Zhou P (2022) Near-optimal and collaborative service caching in mobile edge clouds. IEEE Trans Mobile Comput 22(7):4070–4085CrossRef
14.
Zurück zum Zitat Hao Y, Chen M, Gharavi H, Zhang Y, Hwang K (2020) Deep reinforcement learning for edge service placement in softwarized industrial cyber-physical system. IEEE Trans Indust Inf 17(8):5552–5561CrossRef Hao Y, Chen M, Gharavi H, Zhang Y, Hwang K (2020) Deep reinforcement learning for edge service placement in softwarized industrial cyber-physical system. IEEE Trans Indust Inf 17(8):5552–5561CrossRef
15.
Zurück zum Zitat Sami H, Mourad A, Otrok H, Bentahar J (2021) Demand-driven deep reinforcement learning for scalable fog and service placement. IEEE Trans Serv Comput 15(5):2671–2684CrossRef Sami H, Mourad A, Otrok H, Bentahar J (2021) Demand-driven deep reinforcement learning for scalable fog and service placement. IEEE Trans Serv Comput 15(5):2671–2684CrossRef
16.
Zurück zum Zitat Talpur A, Gurusamy M (2021) Drld-sp: A deep-reinforcement-learning-based dynamic service placement in edge-enabled internet of vehicles. IEEE Internet of Things J 9(8):6239–6251CrossRef Talpur A, Gurusamy M (2021) Drld-sp: A deep-reinforcement-learning-based dynamic service placement in edge-enabled internet of vehicles. IEEE Internet of Things J 9(8):6239–6251CrossRef
17.
Zurück zum Zitat Chen Y, Sun Y, Yang B, Taleb T (2022) Joint caching and computing service placement for edge-enabled iot based on deep reinforcement learning. IEEE Internet of Things J 9(19):19501–19514CrossRef Chen Y, Sun Y, Yang B, Taleb T (2022) Joint caching and computing service placement for edge-enabled iot based on deep reinforcement learning. IEEE Internet of Things J 9(19):19501–19514CrossRef
18.
Zurück zum Zitat Xue Z, Liu C, Liao C, Han G, Sheng Z (2023) Joint service caching and computation offloading scheme based on deep reinforcement learning in vehicular edge computing systems. IEEE Trans Veh Technol 72(5):6709–6722CrossRef Xue Z, Liu C, Liao C, Han G, Sheng Z (2023) Joint service caching and computation offloading scheme based on deep reinforcement learning in vehicular edge computing systems. IEEE Trans Veh Technol 72(5):6709–6722CrossRef
19.
Zurück zum Zitat Zhou H, Zhang Z, Wu Y, Dong M, Leung VC (2022) Energy efficient joint computation offloading and service caching for mobile edge computing: A deep reinforcement learning approach. IEEE Trans Green Commun Netw 7(2):950–961CrossRef Zhou H, Zhang Z, Wu Y, Dong M, Leung VC (2022) Energy efficient joint computation offloading and service caching for mobile edge computing: A deep reinforcement learning approach. IEEE Trans Green Commun Netw 7(2):950–961CrossRef
20.
Zurück zum Zitat Tang Q, Xie R, Fang Z, Huang T, Chen T, Zhang R, Yu FR (2024) Joint service deployment and task scheduling for satellite edge computing: A two-timescale hierarchical approach. IEEE J Select Areas Commun Tang Q, Xie R, Fang Z, Huang T, Chen T, Zhang R, Yu FR (2024) Joint service deployment and task scheduling for satellite edge computing: A two-timescale hierarchical approach. IEEE J Select Areas Commun
21.
Zurück zum Zitat Wei X, Cai L, Wei N, Zou P, Zhang J, Subramaniam S (2023) Joint uav trajectory planning, dag task scheduling, and service function deployment based on drl in uav-empowered edge computing. IEEE Internet of Things J 10(14):12826–12838CrossRef Wei X, Cai L, Wei N, Zou P, Zhang J, Subramaniam S (2023) Joint uav trajectory planning, dag task scheduling, and service function deployment based on drl in uav-empowered edge computing. IEEE Internet of Things J 10(14):12826–12838CrossRef
22.
Zurück zum Zitat Wei Z, Li B, Zhang R, Cheng X, Yang L (2023) Many-to-many task offloading in vehicular fog computing: A multi-agent deep reinforcement learning approach. IEEE Trans Mobile Comput Wei Z, Li B, Zhang R, Cheng X, Yang L (2023) Many-to-many task offloading in vehicular fog computing: A multi-agent deep reinforcement learning approach. IEEE Trans Mobile Comput
23.
Zurück zum Zitat Zhang D, Wang W, Zhang J, Zhang T, Du J, Yang C (2023) Novel edge caching approach based on multi-agent deep reinforcement learning for internet of vehicles. IEEE Trans Intell Transport Syst Zhang D, Wang W, Zhang J, Zhang T, Du J, Yang C (2023) Novel edge caching approach based on multi-agent deep reinforcement learning for internet of vehicles. IEEE Trans Intell Transport Syst
24.
Zurück zum Zitat Naderializadeh N, Sydir JJ, Simsek M, Nikopour H (2021) Resource management in wireless networks via multi-agent deep reinforcement learning. IEEE Trans Wireless Commun 20(6):3507–3523CrossRef Naderializadeh N, Sydir JJ, Simsek M, Nikopour H (2021) Resource management in wireless networks via multi-agent deep reinforcement learning. IEEE Trans Wireless Commun 20(6):3507–3523CrossRef
25.
Zurück zum Zitat Gronauer S, Diepold K (2022) Multi-agent deep reinforcement learning: a survey. Art Intell Rev 55(2):895–943CrossRef Gronauer S, Diepold K (2022) Multi-agent deep reinforcement learning: a survey. Art Intell Rev 55(2):895–943CrossRef
26.
Zurück zum Zitat Zhong C, Gursoy MC, Velipasalar S (2019) Deep multi-agent reinforcement learning based cooperative edge caching in wireless networks. In: ICC 2019-2019 IEEE International Conference on Communications (ICC), pp 1–6. IEEE Zhong C, Gursoy MC, Velipasalar S (2019) Deep multi-agent reinforcement learning based cooperative edge caching in wireless networks. In: ICC 2019-2019 IEEE International Conference on Communications (ICC), pp 1–6. IEEE
27.
Zurück zum Zitat Zhou H, Jiang K, He S, Min G, Wu J (2023) Distributed deep multi-agent reinforcement learning for cooperative edge caching in internet-of-vehicles. IEEE Trans Wireless Commun 22(12):9595–9609 Zhou H, Jiang K, He S, Min G, Wu J (2023) Distributed deep multi-agent reinforcement learning for cooperative edge caching in internet-of-vehicles. IEEE Trans Wireless Commun 22(12):9595–9609
28.
Zurück zum Zitat Yao Z, Xia S, Li Y, Wu G (2023) Cooperative task offloading and service caching for digital twin edge networks: A graph attention multi-agent reinforcement learning approach. IEEE J Select Areas in Commun Yao Z, Xia S, Li Y, Wu G (2023) Cooperative task offloading and service caching for digital twin edge networks: A graph attention multi-agent reinforcement learning approach. IEEE J Select Areas in Commun
29.
Zurück zum Zitat Huang B, Liu X, Xiang Y, Yu D, Deng S, Wang S (2022) Reinforcement learning for cost-effective iot service caching at the edge. J Para Distrib Comput 168:120–136 Huang B, Liu X, Xiang Y, Yu D, Deng S, Wang S (2022) Reinforcement learning for cost-effective iot service caching at the edge. J Para Distrib Comput 168:120–136
30.
Zurück zum Zitat Hu Z, Fang C, Wang Z, Tseng S-M, Dong M (2023) Many-objective optimization based-content popularity prediction for cache-assisted cloud-edge-end collaborative iot networks. IEEE Internet of Things J Hu Z, Fang C, Wang Z, Tseng S-M, Dong M (2023) Many-objective optimization based-content popularity prediction for cache-assisted cloud-edge-end collaborative iot networks. IEEE Internet of Things J
31.
Zurück zum Zitat Wu C, Xu Z, He X, Lou Q, Xia Y, Huang S (2024) Proactive caching with distributed deep reinforcement learning in 6 g cloud-edge collaboration computing. IEEE Trans Para Distrib Syst Wu C, Xu Z, He X, Lou Q, Xia Y, Huang S (2024) Proactive caching with distributed deep reinforcement learning in 6 g cloud-edge collaboration computing. IEEE Trans Para Distrib Syst
32.
Zurück zum Zitat Lin P, Ning Z, Zhang Z, Liu Y, Yu FR, Leung VC (2023) Joint optimization of preference-aware caching and content migration in cost-efficient mobile edge networks. IEEE Trans Wireless Commun Lin P, Ning Z, Zhang Z, Liu Y, Yu FR, Leung VC (2023) Joint optimization of preference-aware caching and content migration in cost-efficient mobile edge networks. IEEE Trans Wireless Commun
33.
Zurück zum Zitat Castenow J, Feldkord B, Knollmann T, Malatyali M, Heide F (2020) The online multi-commodity facility location problem. In: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, pp 129–139 Castenow J, Feldkord B, Knollmann T, Malatyali M, Heide F (2020) The online multi-commodity facility location problem. In: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, pp 129–139
34.
Zurück zum Zitat Yang Y, Lou K, Wang E, Liu W, Shang J, Song X, Li D, Wu J (2023) Multi-agent reinforcement learning based file caching strategy in mobile edge computing. IEEE/ACM Trans Netw Yang Y, Lou K, Wang E, Liu W, Shang J, Song X, Li D, Wu J (2023) Multi-agent reinforcement learning based file caching strategy in mobile edge computing. IEEE/ACM Trans Netw
35.
Zurück zum Zitat Hassan SS, Park YM, Tun YK, Saad W, Han Z, Hong CS (2023) Satellite-based its data offloading & computation in 6g networks: A cooperative multi-agent proximal policy optimization drl with attention approach. IEEE Trans Mobile Comput Hassan SS, Park YM, Tun YK, Saad W, Han Z, Hong CS (2023) Satellite-based its data offloading & computation in 6g networks: A cooperative multi-agent proximal policy optimization drl with attention approach. IEEE Trans Mobile Comput
36.
Zurück zum Zitat Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 30 Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 30
Metadaten
Titel
Service caching with multi-agent reinforcement learning in cloud-edge collaboration computing
verfasst von
Yinglong Li
Zhengjiang Zhang
Han-Chieh Chao
Publikationsdatum
01.04.2025
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 2/2025
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-025-01915-y