Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2016

01.12.2016 | SPECIAL ISSUE: NOVEL SHAPE MEMORY ALLOYS – BEHAVIOR AND PROCESSING, INVITED PAPER

Several Issues in the Development of Ti–Nb-Based Shape Memory Alloys

verfasst von: Hee Young Kim, Shuichi Miyazaki

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ni-free Ti-based shape memory alloys, particularly Ti–Nb-based alloys, have attracted increasing attraction since the early 2000s due to their wide application potentials in biomedical fields. Recently, there has been significant progress in understanding the martensitic transformation behavior of Ti–Nb-based alloys and many novel superelastic alloys have been developed. The superelastic properties of Ti–Nb-based alloys have been remarkably improved through the optimization of alloying elements and microstructure control. In this paper, in order to explore and establish the alloy design strategy, several important issues in the development of Ti–Nb-based shape memory alloys are reviewed. Particularly, the effects of alloying elements on the martensitic transformation temperature and the transformation strain are analyzed. The effects of omega phase and texture on the superelastic properties are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438–440:18–24CrossRef Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438–440:18–24CrossRef
2.
Zurück zum Zitat Miyazaki S, Kim HY (2006) TiNi-base and Ti-base shape memory alloys. Mater Sci Forum 561–565:5–21 Miyazaki S, Kim HY (2006) TiNi-base and Ti-base shape memory alloys. Mater Sci Forum 561–565:5–21
3.
Zurück zum Zitat Kim HY, Miyazaki S (2015) Martensitic transformation and superelastic properties of Ti–Nb base alloys. Mater Trans 56:625–634CrossRef Kim HY, Miyazaki S (2015) Martensitic transformation and superelastic properties of Ti–Nb base alloys. Mater Trans 56:625–634CrossRef
4.
Zurück zum Zitat Kim HY, Hashimoto S, Kim JI, Hosoda H, Miyazaki S (2004) Mechanical properties and shape memory behavior of Ti–Nb alloys. Mater Trans 45:2443–2448CrossRef Kim HY, Hashimoto S, Kim JI, Hosoda H, Miyazaki S (2004) Mechanical properties and shape memory behavior of Ti–Nb alloys. Mater Trans 45:2443–2448CrossRef
5.
Zurück zum Zitat Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54:2419–2429CrossRef Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54:2419–2429CrossRef
6.
Zurück zum Zitat Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S (2002) Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Mater Trans 43:2978–2983CrossRef Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S (2002) Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Mater Trans 43:2978–2983CrossRef
7.
Zurück zum Zitat Matsumoto H, Watanabe S, Hanada S (2007) Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J Alloy Compd 439:146–155CrossRef Matsumoto H, Watanabe S, Hanada S (2007) Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J Alloy Compd 439:146–155CrossRef
8.
Zurück zum Zitat Semboshi S, Shirai T, Konno TJ, Hanada S (2008) In-Situ transmission electron microscopy observation on the phase transformation of Ti–Nb–Sn shape memory alloys. Metall Mater Trans A 39:2820–2829CrossRef Semboshi S, Shirai T, Konno TJ, Hanada S (2008) In-Situ transmission electron microscopy observation on the phase transformation of Ti–Nb–Sn shape memory alloys. Metall Mater Trans A 39:2820–2829CrossRef
9.
Zurück zum Zitat Wang BL, Zheng YF, Zhao LC (2008) Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti–Nb–Sn alloys. Mater Sci Eng A 486:146–151CrossRef Wang BL, Zheng YF, Zhao LC (2008) Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti–Nb–Sn alloys. Mater Sci Eng A 486:146–151CrossRef
10.
Zurück zum Zitat Fukui Y, Inamura T, Hosoda H, Wakashima K, Miyazaki S (2004) Mechanical properties of a Ti–Nb–Al shape memory alloy. Mater Trans 45:1077–1082CrossRef Fukui Y, Inamura T, Hosoda H, Wakashima K, Miyazaki S (2004) Mechanical properties of a Ti–Nb–Al shape memory alloy. Mater Trans 45:1077–1082CrossRef
11.
Zurück zum Zitat Masumoto K, Horiuchi Y, Inamura T, Hosoda H, Wakashima K, Kim HY, Miyazaki S (2006) Effect of Si addition on superelastic properties of Ti–Nb–Al biomedical shape memory alloys. Mater Sci Eng A 438–440:835–838CrossRef Masumoto K, Horiuchi Y, Inamura T, Hosoda H, Wakashima K, Kim HY, Miyazaki S (2006) Effect of Si addition on superelastic properties of Ti–Nb–Al biomedical shape memory alloys. Mater Sci Eng A 438–440:835–838CrossRef
12.
Zurück zum Zitat Hosoda H, Kinoshita Y, Fukui Y, Inamura T, Wakashima K, Kim HY, Miyazaki S (2006) Effects of short time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy. Mater Sci Eng A 438–440:870–874CrossRef Hosoda H, Kinoshita Y, Fukui Y, Inamura T, Wakashima K, Kim HY, Miyazaki S (2006) Effects of short time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy. Mater Sci Eng A 438–440:870–874CrossRef
13.
Zurück zum Zitat Kim JI, Kim HY, Hosoda H, Miyazaki S (2005) Shape memory behavior of Ti–22Nb–(0.5–2.0)O (at.%) biomedical alloys. Mater Trans 46:852–857CrossRef Kim JI, Kim HY, Hosoda H, Miyazaki S (2005) Shape memory behavior of Ti–22Nb–(0.5–2.0)O (at.%) biomedical alloys. Mater Trans 46:852–857CrossRef
14.
Zurück zum Zitat Ramarolahy A, Castany P, Prima F, Laheurte P, Peron I, Gloriant T (2012) Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys. J Mech Behav Biomed Mater 9:83–90CrossRef Ramarolahy A, Castany P, Prima F, Laheurte P, Peron I, Gloriant T (2012) Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys. J Mech Behav Biomed Mater 9:83–90CrossRef
15.
Zurück zum Zitat Tahara M, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory effect and cyclic deformation behavior of Ti–Nb–N alloys. Funct Mater Lett 2:79–82CrossRef Tahara M, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory effect and cyclic deformation behavior of Ti–Nb–N alloys. Funct Mater Lett 2:79–82CrossRef
16.
Zurück zum Zitat Al-Zain Y, Kim HY, Hosoda H, Nam TH, Miyazaki S (2010) Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Mater 58:4212–4223CrossRef Al-Zain Y, Kim HY, Hosoda H, Nam TH, Miyazaki S (2010) Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Mater 58:4212–4223CrossRef
17.
Zurück zum Zitat Kim HY, Oshika N, Kim JI, Inamura T, Hosoda H, Miyazaki S (2007) Martensitic transformation and superelasticity of Ti–Nb–Pt alloys. Mater Trans 48:400–406CrossRef Kim HY, Oshika N, Kim JI, Inamura T, Hosoda H, Miyazaki S (2007) Martensitic transformation and superelasticity of Ti–Nb–Pt alloys. Mater Trans 48:400–406CrossRef
18.
Zurück zum Zitat Ping DH, Mitarai Y, Yin FX (2005) Microstructure and shape memory behavior of a Ti–30Nb–3Pd. Scr Mater 52:1287–1291CrossRef Ping DH, Mitarai Y, Yin FX (2005) Microstructure and shape memory behavior of a Ti–30Nb–3Pd. Scr Mater 52:1287–1291CrossRef
19.
Zurück zum Zitat Kim HY, Hashimoto S, Kim JI, Inamura T, Hosoda H, Miyazaki S (2006) Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. Mater Sci Eng A 417:120–128CrossRef Kim HY, Hashimoto S, Kim JI, Inamura T, Hosoda H, Miyazaki S (2006) Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. Mater Sci Eng A 417:120–128CrossRef
20.
Zurück zum Zitat Kim HY, Sasaki T, Okutsu K, Kim JI, Inamura T, Hosoda H, Miyazaki S (2006) Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Mater 54:423–433CrossRef Kim HY, Sasaki T, Okutsu K, Kim JI, Inamura T, Hosoda H, Miyazaki S (2006) Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Mater 54:423–433CrossRef
21.
Zurück zum Zitat Bertrand E, Gloriant T, Gordin DM, Vasilescu E, Drob P, Vasilescu C, Drob SI (2010) Synthesis and characterization of a new superelastic Ti–25Ta–25Nb biomedical alloy. J Mech Behav Biomed Mater 3:559–564CrossRef Bertrand E, Gloriant T, Gordin DM, Vasilescu E, Drob P, Vasilescu C, Drob SI (2010) Synthesis and characterization of a new superelastic Ti–25Ta–25Nb biomedical alloy. J Mech Behav Biomed Mater 3:559–564CrossRef
22.
Zurück zum Zitat Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, Dubinskiy S, Petrzhik M, Filonov M (2011) Bulk and porous metastable beta Ti–Nb–Zr(Ta) alloys for biomedical applications. Mater Sci Eng C 31:643–657CrossRef Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, Dubinskiy S, Petrzhik M, Filonov M (2011) Bulk and porous metastable beta Ti–Nb–Zr(Ta) alloys for biomedical applications. Mater Sci Eng C 31:643–657CrossRef
23.
Zurück zum Zitat Bertrand E, Castany P, Gloriant T (2013) Investigation of the martensitic transformation and the damping behavior of a superelastic Ti–Ta–Nb alloy. Acta Mater 61:511–518CrossRef Bertrand E, Castany P, Gloriant T (2013) Investigation of the martensitic transformation and the damping behavior of a superelastic Ti–Ta–Nb alloy. Acta Mater 61:511–518CrossRef
24.
Zurück zum Zitat Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S (2006) Effect of annealing temperature on microstructure and shape memory characteristics of Ti–22Nb–6Zr (at.%) biomedical alloy. Mater Trans 47:505–512CrossRef Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S (2006) Effect of annealing temperature on microstructure and shape memory characteristics of Ti–22Nb–6Zr (at.%) biomedical alloy. Mater Trans 47:505–512CrossRef
25.
Zurück zum Zitat Li Q, Niinomi M, Nakai M, Cui ZD, Zhu SL, Yang XJ (2012) Effect of Zr on super-elasticity and mechanical properties of Ti–24 at.% Nb–(0, 2, 4) at.% Zr alloy subjected to aging treatment. Mater Sci Eng A 536:197–206CrossRef Li Q, Niinomi M, Nakai M, Cui ZD, Zhu SL, Yang XJ (2012) Effect of Zr on super-elasticity and mechanical properties of Ti–24 at.% Nb–(0, 2, 4) at.% Zr alloy subjected to aging treatment. Mater Sci Eng A 536:197–206CrossRef
26.
Zurück zum Zitat Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S (2005) Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys. Mater Sci Eng A 403:334–339CrossRef Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S (2005) Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys. Mater Sci Eng A 403:334–339CrossRef
27.
Zurück zum Zitat Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S (2009) Effect of nitrogen addition on superelasticity of Ti–Zr–Nb alloys. Mater Trans 50:2726–2730CrossRef Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S (2009) Effect of nitrogen addition on superelasticity of Ti–Zr–Nb alloys. Mater Trans 50:2726–2730CrossRef
28.
Zurück zum Zitat Sun F, Nowak S, Gloriant T, Laheurte P, Eberhardt A, Prima F (2010) Influence of a short thermal treatment on the superelastic properties of a Titanium-based alloy. Scr Mater 63:1053–1056CrossRef Sun F, Nowak S, Gloriant T, Laheurte P, Eberhardt A, Prima F (2010) Influence of a short thermal treatment on the superelastic properties of a Titanium-based alloy. Scr Mater 63:1053–1056CrossRef
29.
Zurück zum Zitat Cui Y, Li Y, Luo K, Xu HB (2010) Microstructure and shape memory effect of Ti–20Zr–10Nb alloy. Mater Sci Eng A 527:652–656CrossRef Cui Y, Li Y, Luo K, Xu HB (2010) Microstructure and shape memory effect of Ti–20Zr–10Nb alloy. Mater Sci Eng A 527:652–656CrossRef
30.
Zurück zum Zitat Sun F, Hao YL, Nowak S, Gloriant T, Laheurte P, Prima F (2011) A thermal-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr(at.%) alloys. J Mech Behav Biomed Mater 4:1864–1872CrossRef Sun F, Hao YL, Nowak S, Gloriant T, Laheurte P, Prima F (2011) A thermal-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr(at.%) alloys. J Mech Behav Biomed Mater 4:1864–1872CrossRef
31.
Zurück zum Zitat Zhang JY, Sun F, Hao YL, Gozdecki N, Lebrun E, Vermaut P, Portier R, Gloriant T, Laheurte P, Prima F (2013) Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy. Mater Sci Eng A 563:78–85CrossRef Zhang JY, Sun F, Hao YL, Gozdecki N, Lebrun E, Vermaut P, Portier R, Gloriant T, Laheurte P, Prima F (2013) Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy. Mater Sci Eng A 563:78–85CrossRef
32.
Zurück zum Zitat Tahara M, Kim HY, Hosoda H, Nam TY, Miyazaki S (2010) Effect of nitrogen addition and annealing temperature on superelastic properties of Ti–Nb–Zr–Ta alloys. Mater Sci Eng A 527:6844–6852CrossRef Tahara M, Kim HY, Hosoda H, Nam TY, Miyazaki S (2010) Effect of nitrogen addition and annealing temperature on superelastic properties of Ti–Nb–Zr–Ta alloys. Mater Sci Eng A 527:6844–6852CrossRef
33.
Zurück zum Zitat Sakaguch N, Niinomi M, Akahori T (2004) Tensile deformation behavior of Ti–Nb–Ta–Zr biomedical alloys. Mater Trans 45:1113–1119CrossRef Sakaguch N, Niinomi M, Akahori T (2004) Tensile deformation behavior of Ti–Nb–Ta–Zr biomedical alloys. Mater Trans 45:1113–1119CrossRef
34.
Zurück zum Zitat Wang LQ, Lu WJ, Qin JN, Zhang F, Zhang D (2008) Texture and superelastic behavior of cold-rolled TiNbTaZr alloy. Mater Sci Eng A 491:372–377CrossRef Wang LQ, Lu WJ, Qin JN, Zhang F, Zhang D (2008) Texture and superelastic behavior of cold-rolled TiNbTaZr alloy. Mater Sci Eng A 491:372–377CrossRef
35.
Zurück zum Zitat Al-Zain Y, Sato Y, Kim HY, Hosoda H, Nam TH, Miyazaki S (2012) Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Mater 60:2437–2447CrossRef Al-Zain Y, Sato Y, Kim HY, Hosoda H, Nam TH, Miyazaki S (2012) Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Mater 60:2437–2447CrossRef
36.
Zurück zum Zitat Zhang DC, Yang S, Wei M, Mao YF, Tan CG, Lin JG (2012) Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn alloys. J Mech Behav Biomed Mater 13:156–165CrossRef Zhang DC, Yang S, Wei M, Mao YF, Tan CG, Lin JG (2012) Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn alloys. J Mech Behav Biomed Mater 13:156–165CrossRef
37.
Zurück zum Zitat Zhang DC, Mao YF, Yan M, Li JJ, Su EL, Li YL, Tan SW, Lin JG (2013) Superelastic behavior of a β-type titanium alloy. J Mech Behav Biomed Mater 20:29–35CrossRef Zhang DC, Mao YF, Yan M, Li JJ, Su EL, Li YL, Tan SW, Lin JG (2013) Superelastic behavior of a β-type titanium alloy. J Mech Behav Biomed Mater 20:29–35CrossRef
38.
Zurück zum Zitat Ijaz MF, Kim HY, Hosoda H, Miyazaki S (2014) Effect of Sn addition on stress hysteresis and superelastic properties of a Ti–15Nb–3Mo alloy. Scr Mater 72–73:29–32CrossRef Ijaz MF, Kim HY, Hosoda H, Miyazaki S (2014) Effect of Sn addition on stress hysteresis and superelastic properties of a Ti–15Nb–3Mo alloy. Scr Mater 72–73:29–32CrossRef
39.
Zurück zum Zitat Hao YL, Li SJ, Sun SY, Yang R (2006) Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A 441:112–118CrossRef Hao YL, Li SJ, Sun SY, Yang R (2006) Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A 441:112–118CrossRef
40.
Zurück zum Zitat Li SJ, Cui TC, Hao YL, Yang R (2008) Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater 4:305–317CrossRef Li SJ, Cui TC, Hao YL, Yang R (2008) Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater 4:305–317CrossRef
41.
Zurück zum Zitat Obbard EG, Hao YL, Talling RJ, Li SJ, Zhang YW, Dye D, Yang R (2011) The effect of oxygen on α″ martensite and superelasticity in Ti–24Nb–4Zr–8Sn. Acta Mater 59:112–125CrossRef Obbard EG, Hao YL, Talling RJ, Li SJ, Zhang YW, Dye D, Yang R (2011) The effect of oxygen on α″ martensite and superelasticity in Ti–24Nb–4Zr–8Sn. Acta Mater 59:112–125CrossRef
42.
Zurück zum Zitat Fu J, Yamamoto A, Kim HY, Hosoda H, Miyazaki S (2015) Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater 17:56–67CrossRef Fu J, Yamamoto A, Kim HY, Hosoda H, Miyazaki S (2015) Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater 17:56–67CrossRef
43.
Zurück zum Zitat Pavón LL, Kim HY, Hosoda H, Miyazaki S (2015) Effect of Nb content and heat treatment temperature on superelastic properties of Ti–24Zr–(8–12)Nb–2Sn alloys. Scr Mater 95:46–49CrossRef Pavón LL, Kim HY, Hosoda H, Miyazaki S (2015) Effect of Nb content and heat treatment temperature on superelastic properties of Ti–24Zr–(8–12)Nb–2Sn alloys. Scr Mater 95:46–49CrossRef
44.
Zurück zum Zitat Tada H, Yamamoto T, Wang XM, Kato H (2012) Effect of Al addition on superelastic properties of aged Ti–Nb–Zr–Al quaternary alloys. Mater Trans 53:1981–1985CrossRef Tada H, Yamamoto T, Wang XM, Kato H (2012) Effect of Al addition on superelastic properties of aged Ti–Nb–Zr–Al quaternary alloys. Mater Trans 53:1981–1985CrossRef
45.
Zurück zum Zitat Kent D, Wang G, Yu Z, Dargusch MS (2010) Pseudoelastic behaviour of a β Ti–25Nb–3Zr–3Mo–2Sn alloy. Mater Sci Eng A 527:2246–2252CrossRef Kent D, Wang G, Yu Z, Dargusch MS (2010) Pseudoelastic behaviour of a β Ti–25Nb–3Zr–3Mo–2Sn alloy. Mater Sci Eng A 527:2246–2252CrossRef
46.
Zurück zum Zitat Banumathy S, Mandal RK, Singh AK (2009) Structure of orthorhombic martensitic phase in binary Ti–Nb alloys. J App Phys 106:093518CrossRef Banumathy S, Mandal RK, Singh AK (2009) Structure of orthorhombic martensitic phase in binary Ti–Nb alloys. J App Phys 106:093518CrossRef
47.
Zurück zum Zitat Bönisch M, Calin M, Giebeler L, Helth A, Gebert A, Skrotzki W, Eckert J (2014) Composition-dependent magnitude of atomic shuffles in Ti–Nb martensites. J App Cryst 47:1374–1379CrossRef Bönisch M, Calin M, Giebeler L, Helth A, Gebert A, Skrotzki W, Eckert J (2014) Composition-dependent magnitude of atomic shuffles in Ti–Nb martensites. J App Cryst 47:1374–1379CrossRef
48.
Zurück zum Zitat Dubinskiy S, Prokoshkin S, Brailovski V, Inaekyan K, Korotitskiy A (2014) In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features. Mater Character 88:127–142CrossRef Dubinskiy S, Prokoshkin S, Brailovski V, Inaekyan K, Korotitskiy A (2014) In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features. Mater Character 88:127–142CrossRef
49.
Zurück zum Zitat Kim HY, Fu J, Tobe H, Kim JI, Miyazaki S (2015) Crystal structure, transformation strain, and superelastic property of Ti–Nb–Zr and Ti–Nb–Ta alloys. Shape Mem Superelasticity 1:107–116CrossRef Kim HY, Fu J, Tobe H, Kim JI, Miyazaki S (2015) Crystal structure, transformation strain, and superelastic property of Ti–Nb–Zr and Ti–Nb–Ta alloys. Shape Mem Superelasticity 1:107–116CrossRef
50.
Zurück zum Zitat Ojha A, Sehitoglu H (2016) Slip resistance of Ti-based high-temperature shape memory alloys. Shape Mem Superelasticity 2:50–61CrossRef Ojha A, Sehitoglu H (2016) Slip resistance of Ti-based high-temperature shape memory alloys. Shape Mem Superelasticity 2:50–61CrossRef
51.
Zurück zum Zitat Ojha A, Sehitoglu H (2016) Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys. Shape Mem Superelasticity 2:180–195CrossRef Ojha A, Sehitoglu H (2016) Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys. Shape Mem Superelasticity 2:180–195CrossRef
52.
Zurück zum Zitat Inamura T, Kim JI, Kim HY, Hosoda H, Wakashima K, Miyazaki S (2007) Composition dependent crystallography of & α-martensite in Ti–Nb-based β-titanium alloy. Philos Mag 87:3325–3350CrossRef Inamura T, Kim JI, Kim HY, Hosoda H, Wakashima K, Miyazaki S (2007) Composition dependent crystallography of & α-martensite in Ti–Nb-based β-titanium alloy. Philos Mag 87:3325–3350CrossRef
53.
Zurück zum Zitat Horiuchi Y, Nakayama K, Inamura T, Kim HY, Wakashima K, Miyazaki S, Hosoda H (2007) Effect of Cu addition on shape memory behavior of Ti–18 mol%Nb alloys. Mater Trans 48:414–421CrossRef Horiuchi Y, Nakayama K, Inamura T, Kim HY, Wakashima K, Miyazaki S, Hosoda H (2007) Effect of Cu addition on shape memory behavior of Ti–18 mol%Nb alloys. Mater Trans 48:414–421CrossRef
54.
Zurück zum Zitat Horiuchi Y, Inamura T, Kim HY, Wakashima K, Miyazaki S, Hosoda H (2006) X-ray diffraction analysis of Ti–18 mol% Nb based shape memory alloys containing 3d transition metal elements. Mater Trans 48:1209–1213CrossRef Horiuchi Y, Inamura T, Kim HY, Wakashima K, Miyazaki S, Hosoda H (2006) X-ray diffraction analysis of Ti–18 mol% Nb based shape memory alloys containing 3d transition metal elements. Mater Trans 48:1209–1213CrossRef
55.
Zurück zum Zitat Inamura T, Fukui Y, Hosoda H, Wakashima K, Miyazaki S (2005) Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. Mater Sci Eng C 25:426–432CrossRef Inamura T, Fukui Y, Hosoda H, Wakashima K, Miyazaki S (2005) Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. Mater Sci Eng C 25:426–432CrossRef
56.
Zurück zum Zitat Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S (2011) Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Mater 59:2608–2618CrossRef Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S (2011) Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Mater 59:2608–2618CrossRef
57.
Zurück zum Zitat Yazan AZ, Kim HY, Miyazaki S (2015) Effect of B addition on the microstructure and superelastic properties of a Ti–26Nb alloy. Mater Sci Eng 644:85–89CrossRef Yazan AZ, Kim HY, Miyazaki S (2015) Effect of B addition on the microstructure and superelastic properties of a Ti–26Nb alloy. Mater Sci Eng 644:85–89CrossRef
58.
Zurück zum Zitat Wei LS, Kim HY, Koyano T, Miyazaki S (2016) Effects of oxygen concentration and temperature on deformation behavior of Ti–Nb–Zr–Ta–O alloys. Scr Mater 123:55–58CrossRef Wei LS, Kim HY, Koyano T, Miyazaki S (2016) Effects of oxygen concentration and temperature on deformation behavior of Ti–Nb–Zr–Ta–O alloys. Scr Mater 123:55–58CrossRef
59.
Zurück zum Zitat Nii Y, Arima T, Kim HY, Miyazaki S (2010) Effect of randomness on ferroelastic transitions: disorder-induced hysteresis loop rounding in Ti–Nb–O martensitic alloy. Phys Rev B 82:14104CrossRef Nii Y, Arima T, Kim HY, Miyazaki S (2010) Effect of randomness on ferroelastic transitions: disorder-induced hysteresis loop rounding in Ti–Nb–O martensitic alloy. Phys Rev B 82:14104CrossRef
60.
Zurück zum Zitat Tahara M, Kanaya T, Kim HY, Inamura T, Hosoda H, Miyazaki S (2014) Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy. Acta Mater 80:317–326CrossRef Tahara M, Kanaya T, Kim HY, Inamura T, Hosoda H, Miyazaki S (2014) Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy. Acta Mater 80:317–326CrossRef
61.
Zurück zum Zitat Kim HY, Wei LS, Kobayashi S, Tahara M, Miyazaki S (2013) Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy. Acta Mater 67:4874–4886CrossRef Kim HY, Wei LS, Kobayashi S, Tahara M, Miyazaki S (2013) Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy. Acta Mater 67:4874–4886CrossRef
62.
Zurück zum Zitat Wei LS, Kim HY, Miyazaki S (2015) Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys. Acta Mater 100:313–322CrossRef Wei LS, Kim HY, Miyazaki S (2015) Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys. Acta Mater 100:313–322CrossRef
63.
Zurück zum Zitat Hosoda H, Horiuchi Y, Inamura T, Wakashima K, Kim HY, Miyazaki S (2010) Effect of carbon addition of shape memory properties of TiNb alloys. Mater Sci Forum 638–642:2046–2051CrossRef Hosoda H, Horiuchi Y, Inamura T, Wakashima K, Kim HY, Miyazaki S (2010) Effect of carbon addition of shape memory properties of TiNb alloys. Mater Sci Forum 638–642:2046–2051CrossRef
64.
Zurück zum Zitat Al-Zain Y, Kim HY, Koyano T, Hosoda H, Nam TH, Miyazaki S (2011) Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys. Acta Mater 59:1464–1773CrossRef Al-Zain Y, Kim HY, Koyano T, Hosoda H, Nam TH, Miyazaki S (2011) Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys. Acta Mater 59:1464–1773CrossRef
65.
Zurück zum Zitat Yamada K, Ogawa A, Ouchi C, Eylon D (1996) Effect of Al on ω phase transformation behavior in Ti–8V–5Fe–(1–3)Al alloy. Mater Trans JIM 37:855–859CrossRef Yamada K, Ogawa A, Ouchi C, Eylon D (1996) Effect of Al on ω phase transformation behavior in Ti–8V–5Fe–(1–3)Al alloy. Mater Trans JIM 37:855–859CrossRef
66.
Zurück zum Zitat Tane M, Nakano T, Kuramoto S, Hara M, Niinomi M, Takesue N, Yano T, Nakajima H (2011) Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater 59:6975–6988CrossRef Tane M, Nakano T, Kuramoto S, Hara M, Niinomi M, Takesue N, Yano T, Nakajima H (2011) Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater 59:6975–6988CrossRef
67.
Zurück zum Zitat Inamura T, Horiuchi Y, Hosoda H, Wakashima K, Miyazaki S (2004) Relationship between texture and macroscopic transformation strain in severely cold-rolled Ti–Nb–Al superelastic alloy. Mater Trans 45:1083–1089CrossRef Inamura T, Horiuchi Y, Hosoda H, Wakashima K, Miyazaki S (2004) Relationship between texture and macroscopic transformation strain in severely cold-rolled Ti–Nb–Al superelastic alloy. Mater Trans 45:1083–1089CrossRef
Metadaten
Titel
Several Issues in the Development of Ti–Nb-Based Shape Memory Alloys
verfasst von
Hee Young Kim
Shuichi Miyazaki
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2016
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-016-0087-7

Weitere Artikel der Ausgabe 4/2016

Shape Memory and Superelasticity 4/2016 Zur Ausgabe

SPECIAL ISSUE: ADVANCES IN EXPERIMENTATION AT MULTIPLE LENGTH SCALES IN SHAPE MEMORY ALLOYS, INVITED PAPER

Optimization of Automated Crystal Orientation Mapping in a TEM for Ni4Ti3 Precipitation in All-Round SMA

Special Issue: Theory, Modeling, and Simulation of Shape Memory Alloys, Invited Paper

A Constitutive Model for Isothermal Pseudoelasticity Coupled with Plasticity

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.