Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2017

18.10.2016

Shallow water entry: modeling and experiments

verfasst von: Mohammad Jalalisendi, Sam Zhao, Maurizio Porfiri

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As marine vessels expand their range of operations and their planing speeds increase, understanding the physics of shallow water entry becomes of paramount importance. High-speed impact on the surface is responsible for impulsive hydrodynamic loading, spatiotemporal evolution of which is controlled by the entry speed and the vessel geometry. For shallow water impact, the presence of the ground may further influence the hydrodynamic loading, by constraining the water motion beneath the impacting hull. Here, we present a theoretical and experimental framework to investigate shallow water entry, in the context of the two-dimensional water impact of a wedge. Wagner theory is extended to describe the finiteness of the water column, and the resulting mixed boundary value problem is analytically solved to determine the velocity potential, free surface elevation, and pressure field. To complement and validate the semi-analytical scheme, experiments are performed using particle image velocimetry, by systematically varying the height of the water column. The velocity data are then utilized to reconstruct the pressure field in the fluid and infer the hydrodynamic loading on the wedge. Experimental observations confirm the accuracy of the proposed modeling framework, which is successful in anticipating the role of the bottom wall on the physics of the impact. Our results indicate that the pressure distribution is controlled by the water height, whereby we observe an increase in the pressure at the keel, accompanied by a decrease in the pile-up, as the water column becomes thinner. The results of this study are expected to offer insight into the design of marine vessels and constitute a solid basis for understanding the role of fluid confinement in shallow water entry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
As further detailed in [52], this manipulation obviates the need to compute the derivative with respect to \(\tau \) in Eq. (21).
 
Literatur
2.
Zurück zum Zitat Faltinsen OM (2006) Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New YorkCrossRef Faltinsen OM (2006) Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New YorkCrossRef
3.
Zurück zum Zitat Hughes K, Vignjevic R, Campbell J, De Vuyst T, Djordjevic N, Papagiannis L (2013) From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems. Int J Impact Eng 61:48–63CrossRef Hughes K, Vignjevic R, Campbell J, De Vuyst T, Djordjevic N, Papagiannis L (2013) From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems. Int J Impact Eng 61:48–63CrossRef
4.
Zurück zum Zitat Von Karman T (1929) The impact on seaplane floats, during landing. NACA-TN-321 Von Karman T (1929) The impact on seaplane floats, during landing. NACA-TN-321
5.
Zurück zum Zitat Wagner H (1932) Uber stoss-und gleitvorgange an der oberflache von flussigkeite. Z Angew Math Mech (ZAMM) 12(4):193–215CrossRefMATH Wagner H (1932) Uber stoss-und gleitvorgange an der oberflache von flussigkeite. Z Angew Math Mech (ZAMM) 12(4):193–215CrossRefMATH
6.
Zurück zum Zitat Faltinsen OM (1997) The effect of hydroelasticity on ship slamming. Philos Trans R Soc Lond Ser A 355(1724):575–591ADSCrossRefMATH Faltinsen OM (1997) The effect of hydroelasticity on ship slamming. Philos Trans R Soc Lond Ser A 355(1724):575–591ADSCrossRefMATH
7.
Zurück zum Zitat Korobkin AA, Guéret R, Malenica Š (2006) Hydroelastic coupling of beam finite element model with Wagner theory of water impact. J Fluids Struct 22(4):493–504CrossRef Korobkin AA, Guéret R, Malenica Š (2006) Hydroelastic coupling of beam finite element model with Wagner theory of water impact. J Fluids Struct 22(4):493–504CrossRef
8.
Zurück zum Zitat Qin Z, Batra RC (2009) Local slamming impact of sandwich composite hulls. Int J Solids Struct 46(10):2011–2035CrossRefMATH Qin Z, Batra RC (2009) Local slamming impact of sandwich composite hulls. Int J Solids Struct 46(10):2011–2035CrossRefMATH
9.
Zurück zum Zitat Khabakhpasheva TI, Korobkin AA (2013) Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models. J Fluids Struct 36:32–49CrossRef Khabakhpasheva TI, Korobkin AA (2013) Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models. J Fluids Struct 36:32–49CrossRef
10.
Zurück zum Zitat Shams A, Porfiri M (2015) Treatment of hydroelastic impact of flexible wedges. J Fluids Struct 57:229–246CrossRef Shams A, Porfiri M (2015) Treatment of hydroelastic impact of flexible wedges. J Fluids Struct 57:229–246CrossRef
11.
Zurück zum Zitat Toyama Y (1993) Two-dimensional water impact of unsymmetrical bodies. J Soc Nav Archit Jpn 173:285–291CrossRef Toyama Y (1993) Two-dimensional water impact of unsymmetrical bodies. J Soc Nav Archit Jpn 173:285–291CrossRef
12.
Zurück zum Zitat Xu L, Troesch AW, Vorus WS (1998) Asymmetric vessel impact and planing hydrodynamics. J Ship Res 42(3):187–198 Xu L, Troesch AW, Vorus WS (1998) Asymmetric vessel impact and planing hydrodynamics. J Ship Res 42(3):187–198
13.
Zurück zum Zitat Korobkin AA, Malenica S (2005) Modified Logvinovich model for hydrodynamic loads on asymmetric contours entering water. In: 20th International Workshop on Water Waves and Floating Bodies, Longyearbyen, May, pp 21(1)–21(4) Korobkin AA, Malenica S (2005) Modified Logvinovich model for hydrodynamic loads on asymmetric contours entering water. In: 20th International Workshop on Water Waves and Floating Bodies, Longyearbyen, May, pp 21(1)–21(4)
15.
16.
Zurück zum Zitat Battistin D, Iafrati A (2003) Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. J Fluid Struct 17(5):643–664CrossRef Battistin D, Iafrati A (2003) Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. J Fluid Struct 17(5):643–664CrossRef
17.
Zurück zum Zitat Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213(2):803–822ADSMathSciNetCrossRefMATH Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213(2):803–822ADSMathSciNetCrossRefMATH
18.
Zurück zum Zitat Stenius I, Rosén A, Kuttenkeuler J (2011) Hydroelastic interaction in panel-water impacts of high-speed craft. Ocean Eng 38(2):371–381CrossRef Stenius I, Rosén A, Kuttenkeuler J (2011) Hydroelastic interaction in panel-water impacts of high-speed craft. Ocean Eng 38(2):371–381CrossRef
19.
Zurück zum Zitat Wang S, Soares CG (2013) Slam induced loads on bow-flared sections with various roll angles. Ocean Eng 67:45–57CrossRef Wang S, Soares CG (2013) Slam induced loads on bow-flared sections with various roll angles. Ocean Eng 67:45–57CrossRef
20.
Zurück zum Zitat De Rosis A, Falcucci G, Porfiri M, Ubertini F, Ubertini S (2014) Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput Struct 138:24–35CrossRef De Rosis A, Falcucci G, Porfiri M, Ubertini F, Ubertini S (2014) Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput Struct 138:24–35CrossRef
21.
Zurück zum Zitat Facci AL, Panciroli R, Ubertini S, Porfiri M (2015) Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J Fluids Struct 55:484–500CrossRef Facci AL, Panciroli R, Ubertini S, Porfiri M (2015) Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J Fluids Struct 55:484–500CrossRef
22.
Zurück zum Zitat Chuang SL (1966) Slamming of rigid wedge-shaped bodies with various deadrise angles. Technical Report DTMB-2268 Chuang SL (1966) Slamming of rigid wedge-shaped bodies with various deadrise angles. Technical Report DTMB-2268
23.
Zurück zum Zitat Judge C, Troesch A, Perlin M (2004) Initial water impact of a wedge at vertical and oblique angles. J Eng Math 48(3–4):279–303MathSciNetCrossRefMATH Judge C, Troesch A, Perlin M (2004) Initial water impact of a wedge at vertical and oblique angles. J Eng Math 48(3–4):279–303MathSciNetCrossRefMATH
24.
Zurück zum Zitat Peseux B, Gornet L, Donguy B (2005) Hydrodynamic impact: numerical and experimental investigations. J Fluids Struct 21(3):277–303CrossRef Peseux B, Gornet L, Donguy B (2005) Hydrodynamic impact: numerical and experimental investigations. J Fluids Struct 21(3):277–303CrossRef
25.
Zurück zum Zitat Tveitnes T, Fairlie-Clarke AC, Varyani K (2008) An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng 35(14):1463–1478CrossRef Tveitnes T, Fairlie-Clarke AC, Varyani K (2008) An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng 35(14):1463–1478CrossRef
26.
Zurück zum Zitat El Malki Alaoui A, Nême A, Tassin A, Jacques N (2012) Experimental study of coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds. Appl Ocean Res 37:183–197CrossRef El Malki Alaoui A, Nême A, Tassin A, Jacques N (2012) Experimental study of coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds. Appl Ocean Res 37:183–197CrossRef
27.
Zurück zum Zitat Stenius I, Rosén A, Battley M, Allen T (2013) Experimental hydroelastic characterization of slamming loaded marine panels. Ocean Eng 74:1–15CrossRef Stenius I, Rosén A, Battley M, Allen T (2013) Experimental hydroelastic characterization of slamming loaded marine panels. Ocean Eng 74:1–15CrossRef
28.
Zurück zum Zitat Batyaev EA, Khabakhpasheva TI (2013) Initial stage of the inclined impact of a smooth body on a thin fluid layer. Fluid Dyn 48(2):211–222ADSMathSciNetCrossRefMATH Batyaev EA, Khabakhpasheva TI (2013) Initial stage of the inclined impact of a smooth body on a thin fluid layer. Fluid Dyn 48(2):211–222ADSMathSciNetCrossRefMATH
29.
Zurück zum Zitat Korobkin AA (1995) Impact of two bodies one of which is covered by a thin layer of liquid. J Fluid Mech 300:43–58ADSCrossRefMATH Korobkin AA (1995) Impact of two bodies one of which is covered by a thin layer of liquid. J Fluid Mech 300:43–58ADSCrossRefMATH
31.
Zurück zum Zitat Howison SD, Ockendon JR, Oliver JM (2002) Deep- and shallow-water slamming at small and zero deadrise angles. J Eng Math 42(3–4):373–388MathSciNetCrossRefMATH Howison SD, Ockendon JR, Oliver JM (2002) Deep- and shallow-water slamming at small and zero deadrise angles. J Eng Math 42(3–4):373–388MathSciNetCrossRefMATH
32.
Zurück zum Zitat Oliver JM (2002) Water entry and related problems. PhD Thesis, University of Oxford Oliver JM (2002) Water entry and related problems. PhD Thesis, University of Oxford
33.
34.
Zurück zum Zitat Korobkin AA (1996) Advances in marine hydrodynamics. Mechanics Publications, Southampton Korobkin AA (1996) Advances in marine hydrodynamics. Mechanics Publications, Southampton
36.
Zurück zum Zitat Tung RC, Jana A, Raman A (2008) Hydrodynamic loading of microcantilevers oscillating near rigid walls. J Appl Phys 104(11):114905ADSCrossRef Tung RC, Jana A, Raman A (2008) Hydrodynamic loading of microcantilevers oscillating near rigid walls. J Appl Phys 104(11):114905ADSCrossRef
37.
Zurück zum Zitat Grimaldi E, Porfiri M, Soria L (2012) Finite amplitude vibrations of a sharp-edged beam immersed in a viscous fluid near a solid surface. J Appl Phys 112(10):104907ADSCrossRef Grimaldi E, Porfiri M, Soria L (2012) Finite amplitude vibrations of a sharp-edged beam immersed in a viscous fluid near a solid surface. J Appl Phys 112(10):104907ADSCrossRef
38.
Zurück zum Zitat Zhang WM, Yan H, Peng ZK, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: a review. Sensors Actuators A 214:187–218CrossRef Zhang WM, Yan H, Peng ZK, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: a review. Sensors Actuators A 214:187–218CrossRef
39.
Zurück zum Zitat Ermanyuk EV, Ohkusu M (2005) Impact of a disk on shallow water. J Fluids Struct 20(3):345–357CrossRef Ermanyuk EV, Ohkusu M (2005) Impact of a disk on shallow water. J Fluids Struct 20(3):345–357CrossRef
40.
Zurück zum Zitat Ermanyuk EV, Gavrilov NV (2011) Experimental study of disk impact onto shallow water. J Appl Mech Tech Phys 52(6):889–895ADSCrossRef Ermanyuk EV, Gavrilov NV (2011) Experimental study of disk impact onto shallow water. J Appl Mech Tech Phys 52(6):889–895ADSCrossRef
41.
Zurück zum Zitat Bukreev VI, Gusev AV (1996) Gravity waves generated by a body falling onto shallow water. J Appl Mech Tech Phys 37(2):224–231ADSCrossRef Bukreev VI, Gusev AV (1996) Gravity waves generated by a body falling onto shallow water. J Appl Mech Tech Phys 37(2):224–231ADSCrossRef
42.
Zurück zum Zitat Kang HD, Oh SH, Kwon SH (2009) An experimental study on shallow water effect in slamming. J Ocean Eng Technol 23(1):60–66 Kang HD, Oh SH, Kwon SH (2009) An experimental study on shallow water effect in slamming. J Ocean Eng Technol 23(1):60–66
43.
Zurück zum Zitat Nila A, Vanlanduit S, Vepa S, Van Paepegem W (2013) A PIV-based method for estimating slamming loads during water entry of rigid bodies. Meas Sci Technol 24(4):045303ADSCrossRef Nila A, Vanlanduit S, Vepa S, Van Paepegem W (2013) A PIV-based method for estimating slamming loads during water entry of rigid bodies. Meas Sci Technol 24(4):045303ADSCrossRef
44.
Zurück zum Zitat Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54(12):1630CrossRef Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54(12):1630CrossRef
45.
Zurück zum Zitat Jalalisendi M, Shams A, Panciroli R, Porfiri M (2015) Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp Fluids 56(2):1–17CrossRef Jalalisendi M, Shams A, Panciroli R, Porfiri M (2015) Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp Fluids 56(2):1–17CrossRef
46.
Zurück zum Zitat Jalalisendi M, Osma SJ, Porfiri M (2015) Three-dimensional water entry of a solid body: a particle image velocimetry study. J Fluids Struct 59:85–102CrossRef Jalalisendi M, Osma SJ, Porfiri M (2015) Three-dimensional water entry of a solid body: a particle image velocimetry study. J Fluids Struct 59:85–102CrossRef
47.
Zurück zum Zitat Panciroli R, Shams A, Porfiri M (2015) Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng 94:213–222CrossRef Panciroli R, Shams A, Porfiri M (2015) Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng 94:213–222CrossRef
48.
Zurück zum Zitat Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27(2):027,103CrossRef Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27(2):027,103CrossRef
49.
Zurück zum Zitat Panciroli R, Porfiri M (2015) Analysis of hydroelastic slamming through particle image velocimetry. J Sound Vib 347:63–78ADSCrossRef Panciroli R, Porfiri M (2015) Analysis of hydroelastic slamming through particle image velocimetry. J Sound Vib 347:63–78ADSCrossRef
50.
Zurück zum Zitat Huera-Huarte FJ, Jeon D, Gharib M (2011) Experimental investigation of water slamming loads on panels. Ocean Eng 38(11):1347–1355CrossRef Huera-Huarte FJ, Jeon D, Gharib M (2011) Experimental investigation of water slamming loads on panels. Ocean Eng 38(11):1347–1355CrossRef
51.
Zurück zum Zitat Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Academic Press, Burlington Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Academic Press, Burlington
52.
Zurück zum Zitat Cooke JC (1970) The solution of some integral equations and their connection with dual integral equations and series. Glasgow Math J 11(01):9–20MathSciNetCrossRefMATH Cooke JC (1970) The solution of some integral equations and their connection with dual integral equations and series. Glasgow Math J 11(01):9–20MathSciNetCrossRefMATH
53.
Zurück zum Zitat Singh BM, Moodie TB (1981) Closed-form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mech 38(1–2):99–109MathSciNetCrossRefMATH Singh BM, Moodie TB (1981) Closed-form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mech 38(1–2):99–109MathSciNetCrossRefMATH
54.
Zurück zum Zitat Roberts JC, Boyle MP, Wienhold PD, White GJ (2002) Buckling, collapse and failure analysis of FRP sandwich panels. Composites B 33(4):315–324CrossRef Roberts JC, Boyle MP, Wienhold PD, White GJ (2002) Buckling, collapse and failure analysis of FRP sandwich panels. Composites B 33(4):315–324CrossRef
56.
Zurück zum Zitat Thielicke W, Stamhuis EJ (2014) PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2(1):e30 Thielicke W, Stamhuis EJ (2014) PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2(1):e30
57.
Zurück zum Zitat Scarano F, Riethmuller M (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523CrossRef Scarano F, Riethmuller M (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523CrossRef
58.
Zurück zum Zitat Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060 Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060
59.
Zurück zum Zitat Nobach H, Damaschke N, Tropea C (2005) High-precision sub-pixel interpolation in particle image velocimetry image processing. Exp Fluids 39(2):299–304CrossRef Nobach H, Damaschke N, Tropea C (2005) High-precision sub-pixel interpolation in particle image velocimetry image processing. Exp Fluids 39(2):299–304CrossRef
60.
Zurück zum Zitat Rayleigh Lord (1911) On the motion of solid bodies through viscous liquid. Lond Edinb Dublin Philos Mag J Sci 21(126):697–711CrossRefMATH Rayleigh Lord (1911) On the motion of solid bodies through viscous liquid. Lond Edinb Dublin Philos Mag J Sci 21(126):697–711CrossRefMATH
61.
Zurück zum Zitat Baur T, Köngeter J. (1999) PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. In: 3rd International workshop on PIV’99, Santa Barbara, pp 101–106 Baur T, Köngeter J. (1999) PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. In: 3rd International workshop on PIV’99, Santa Barbara, pp 101–106
62.
Zurück zum Zitat Mei X, Liu Y, Yue DK (1999) On the water impact of general two-dimensional sections. Appl Ocean Res 21(1):1–15CrossRef Mei X, Liu Y, Yue DK (1999) On the water impact of general two-dimensional sections. Appl Ocean Res 21(1):1–15CrossRef
Metadaten
Titel
Shallow water entry: modeling and experiments
verfasst von
Mohammad Jalalisendi
Sam Zhao
Maurizio Porfiri
Publikationsdatum
18.10.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2017
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-016-9877-3

Weitere Artikel der Ausgabe 1/2017

Journal of Engineering Mathematics 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.