2019 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
The well known Weyl’s asymptotic formula gives an approximation to the number \(\mathcal {N}_{\omega }\) of eigenvalues (counted with multiplicities) on an interval \([0,{\,}\omega ]\) of an elliptic second-order differential self-adjoint non-negative operator on a compact Riemannian manifold \(\mathbf{M}\). In this paper we approach this question from the point of view of Shannon-type sampling on compact Riemannian manifolds. Namely, we give a direct proof that \(\mathcal {N}_{\omega }\) is comparable to cardinality of certain sampling sets for the subspace of \(\omega \)-bandlimited functions on \(\mathbf{M}\).
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl.
18(5), 995–1066 (2012)
MathSciNetCrossRef
2.
Geller, D., Pesenson, I.: Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal.
21(2), 334–371 (2011)
MathSciNetCrossRef
3.
Pesenson, I.: A sampling theorem on homogeneous manifolds. Trans. Amer. Math. Soc.
352(9), 4257–4269 (2000)
MathSciNetCrossRef
4.
Pesenson, I.: An approach to spectral problems on Riemannian manifolds. Pacific J. Math.
215(1), 183–199 (2004)
MathSciNetCrossRef
5.
Pesenson, I.: Poincare-type inequalities and reconstruction of Paley-Wiener functions on manifolds. J. Geom. Anal.
4(1), 101–121 (2004)
MathSciNetCrossRef
6.
Pesenson, I.Z.: Paley-Wiener approximations and multiscale approximations in Sobolev and Besov spaces on manifolds. J. Geom. Anal.
4(1), 101–121 (2009)
MathSciNetCrossRef
7.
Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge University Press (1993)
8.
Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press (1997)
- Titel
- Shannon Sampling and Weak Weyl’s Law on Compact Riemannian Manifolds
- DOI
- https://doi.org/10.1007/978-3-030-05657-5_13
- Autor:
-
Isaac Z. Pesenson
- Sequenznummer
- 13