Skip to main content

2014 | OriginalPaper | Buchkapitel

9. Shape Analysis in Radiotherapy and Tumor Surgical Planning Using Segmentation Techniques

verfasst von : S. Zimeras, L. Gortzis, Ch. Pylarinou

Erschienen in: System-Level Design Methodologies for Telecommunication

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most medical imaging applications base their functionality on replacing the physical patient model with the digital data of the patient coming from any medical imaging modality. Medical imaging techniques offer unique capabilities on collecting digital data of the human body. Nowadays, technical evolutions allow the generation of three-dimensional (3D) data within a few moments. The 3D dataset has a great benefit over conventional two-dimensional (2D) images, especially in cases with complex anatomy or pathology. Radiotherapy treatment (RT) is a very demanding cancer treatment process. The aim of the treatment is to cure or to limit the disease with a minimum possible damage of healthy tissues. The process is composed of several steps that are highly dependent on each other in order to achieve the desired results. Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. Accurate segmentation is required for volume determination, 3D rendering, radiation therapy, and surgery planning. In medical images, segmentation has traditionally been done by human experts. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore, automated or semiautomated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. Many methods have been proposed to detect and segment 2D shapes, most of which involve template matching. Advanced segmentation techniques called Snakes or active contours have been used, considering deformable models or templates. The main purpose of this work is to apply segmentation techniques for the definition of 3D organs (anatomical structures) under RT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transaction on Pattern Analysis and Machine Learning, 16(6), 641–647.CrossRef Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transaction on Pattern Analysis and Machine Learning, 16(6), 641–647.CrossRef
2.
Zurück zum Zitat Amenta, N., Bern, M., & Kamvysselis, M. (1998). A new Voronoi-based surface reconstruction algorithm. Annual Conference on Computer Graphics (SIGGRAPH ’98), USA, 415–421. Amenta, N., Bern, M., & Kamvysselis, M. (1998). A new Voronoi-based surface reconstruction algorithm. Annual Conference on Computer Graphics (SIGGRAPH ’98), USA, 415–421.
3.
Zurück zum Zitat Bajaj, C., Bernardini, F., & Xu, G. (1995). Automatic reconstruction of surfaces and scalar field from 3D scans. Annual Conference on Computer Graphics (SIGGRAPH ’95), USA, 109–118. Bajaj, C., Bernardini, F., & Xu, G. (1995). Automatic reconstruction of surfaces and scalar field from 3D scans. Annual Conference on Computer Graphics (SIGGRAPH ’95), USA, 109–118.
4.
Zurück zum Zitat Behr, J., Choi, S. M., Großkopf, S., Hong, H., Nam, S. A., Peng, Y., Hildebrand, A., Kim, M. H., & Sakas, G. (2000). Modeling, visualization, and interaction techniques for diagnosis and treatment planning in cardiology. Computers & Graphics, 24, 741–753.CrossRef Behr, J., Choi, S. M., Großkopf, S., Hong, H., Nam, S. A., Peng, Y., Hildebrand, A., Kim, M. H., & Sakas, G. (2000). Modeling, visualization, and interaction techniques for diagnosis and treatment planning in cardiology. Computers & Graphics, 24, 741–753.CrossRef
5.
Zurück zum Zitat Belshi, R., Pontvert, D., Rosenwald, J. C., & Gaboriaud, G. (1997). Automatic three dimensional expansion of structures applied to determination of the clinical target volume in conformal radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 37, 689–696.CrossRef Belshi, R., Pontvert, D., Rosenwald, J. C., & Gaboriaud, G. (1997). Automatic three dimensional expansion of structures applied to determination of the clinical target volume in conformal radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 37, 689–696.CrossRef
6.
Zurück zum Zitat Blake, A., & Isard, M. (1998). Active contours: The application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. London: Springer-Verlag.CrossRef Blake, A., & Isard, M. (1998). Active contours: The application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. London: Springer-Verlag.CrossRef
7.
Zurück zum Zitat Boissonat, J. (1998). Shape reconstruction from planar cross sections. Computer Vision, Graphics And Image Processing, 44, 1–29.CrossRef Boissonat, J. (1998). Shape reconstruction from planar cross sections. Computer Vision, Graphics And Image Processing, 44, 1–29.CrossRef
8.
Zurück zum Zitat Cohen, E., Riesenfeld, R. F., & Elber, G. (2010). Geometric modeling with splines: An introduction. Natick, USA: A.K. Peters Ltd. Cohen, E., Riesenfeld, R. F., & Elber, G. (2010). Geometric modeling with splines: An introduction. Natick, USA: A.K. Peters Ltd.
9.
Zurück zum Zitat Frenzel, T., Albers, D., Hohne, K. H., & Schmidt, R. (1997). Problems in medical imaging in radiation therapy. In H. U. Lemke, et al. (Eds.), Proceedings of CARS 1997 (Computer Assisted Radiology and Surgery) (pp. 381–387). Amsterdam: Excerpta Medica ICS 1134, Elsevier. Frenzel, T., Albers, D., Hohne, K. H., & Schmidt, R. (1997). Problems in medical imaging in radiation therapy. In H. U. Lemke, et al. (Eds.), Proceedings of CARS 1997 (Computer Assisted Radiology and Surgery) (pp. 381–387). Amsterdam: Excerpta Medica ICS 1134, Elsevier.
10.
Zurück zum Zitat Grosskopf, S., Park, S. Y., & Kim, M. H. (1998). Segmentation of ultrasonic images by application of active contour models. Proceedings of CARS 1998 (Computer Assisted Radiology and Surgery), Tokyo, Japan, 871–877. Grosskopf, S., Park, S. Y., & Kim, M. H. (1998). Segmentation of ultrasonic images by application of active contour models. Proceedings of CARS 1998 (Computer Assisted Radiology and Surgery), Tokyo, Japan, 871–877.
11.
Zurück zum Zitat Grosskopf, S., Encarnação, J. L. (Referent), & Sakas, G. (Referent). (2002). Realitätsnahe Modellierung und Visualisierung dynamischer medizinischer Bilddaten mittels aktiver Konturen, aktiver Regionen und deformierbarer Modelle. Technischen Universität, Darmstadt. Grosskopf, S., Encarnação, J. L. (Referent), & Sakas, G. (Referent). (2002). Realitätsnahe Modellierung und Visualisierung dynamischer medizinischer Bilddaten mittels aktiver Konturen, aktiver Regionen und deformierbarer Modelle. Technischen Universität, Darmstadt.
12.
Zurück zum Zitat Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganised points. Annual Conference on Computer Graphics (SIGGRAPH ’92), USA, 71–78. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganised points. Annual Conference on Computer Graphics (SIGGRAPH ’92), USA, 71–78.
13.
Zurück zum Zitat Karangelis, G. (2004). 3D simulation of external beam radiotherapy. Ph.D. thesis, University of Darmstadt, Darmstadt, Germany. Karangelis, G. (2004). 3D simulation of external beam radiotherapy. Ph.D. thesis, University of Darmstadt, Darmstadt, Germany.
14.
Zurück zum Zitat Karangelis, G., & Zimeras, S. (2002a). An accurate 3D segmentation method of the spinal canal applied on CT images. In BVM 2002, Confedrence Proceedings (pp. 366–369). Berlin, Germany: Springer-Verlag. Karangelis, G., & Zimeras, S. (2002a). An accurate 3D segmentation method of the spinal canal applied on CT images. In BVM 2002, Confedrence Proceedings (pp. 366–369). Berlin, Germany: Springer-Verlag.
15.
Zurück zum Zitat Karangelis, G., & Zimeras, S. (2002b). 3D segmentation method of the spinal cord applied on CT data. Computer Graphics Topics, 14, 28–29. Karangelis, G., & Zimeras, S. (2002b). 3D segmentation method of the spinal cord applied on CT data. Computer Graphics Topics, 14, 28–29.
16.
Zurück zum Zitat Karangelis, G., Zimeras, S., Firle, E., Wang, M., & Sakas, G. (2001). Volume definition tools for medical image applications. 4th MICCAI International Conference. In M-A. Viergever, T. Dohi, & M. Vannier (Eds.), Lecture Notes in Computer Sciences (Vol. 2208, pp. 1295–1297). Utrecht, Netherlands: Springer-Verlag. Karangelis, G., Zimeras, S., Firle, E., Wang, M., & Sakas, G. (2001). Volume definition tools for medical image applications. 4th MICCAI International Conference. In M-A. Viergever, T. Dohi, & M. Vannier (Eds.), Lecture Notes in Computer Sciences (Vol. 2208, pp. 1295–1297). Utrecht, Netherlands: Springer-Verlag.
17.
Zurück zum Zitat Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. IEEE First International Conference on Computer Vision, 259–268. Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. IEEE First International Conference on Computer Vision, 259–268.
18.
Zurück zum Zitat Kessler, M. K., & McShan, D. L. (1994). An application for design and simulation of conformal radiation therapy. In R. A. Robb (Ed.), Visualization in Biomedical Computing, Proceedings SPIE 2359 (pp. 474–483), Rochester, MN. Kessler, M. K., & McShan, D. L. (1994). An application for design and simulation of conformal radiation therapy. In R. A. Robb (Ed.), Visualization in Biomedical Computing, Proceedings SPIE 2359 (pp. 474–483), Rochester, MN.
19.
Zurück zum Zitat Kuszyk, B. S., Ney, D. R., & Fishman, E. K. (1995). The current state of the art in three dimensional oncologic imaging: An overview. International Journal of Radiation Oncology, Biology, Physics, 33, 1029–1039.CrossRef Kuszyk, B. S., Ney, D. R., & Fishman, E. K. (1995). The current state of the art in three dimensional oncologic imaging: An overview. International Journal of Radiation Oncology, Biology, Physics, 33, 1029–1039.CrossRef
20.
Zurück zum Zitat Laurent, P. J., Le Mehaute, A., & Schumaker, L. L. (1994). Curves and surfaces in geometric design. Natick, USA: A.K. Peters Ltd.MATH Laurent, P. J., Le Mehaute, A., & Schumaker, L. L. (1994). Curves and surfaces in geometric design. Natick, USA: A.K. Peters Ltd.MATH
21.
Zurück zum Zitat Levoy, M., et al. (1988). Display of surface from volume data. IEEE CGA, 8. Levoy, M., et al. (1988). Display of surface from volume data. IEEE CGA, 8.
22.
Zurück zum Zitat McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: A survey. Medical Image Analysis, 1, 91–108.CrossRef McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: A survey. Medical Image Analysis, 1, 91–108.CrossRef
23.
Zurück zum Zitat Meyers, D., Skinner, S., & Sloan, K. (1992). Surfaces from contours. ACM Transactions on Graphics, 11, 228–258.CrossRefMATH Meyers, D., Skinner, S., & Sloan, K. (1992). Surfaces from contours. ACM Transactions on Graphics, 11, 228–258.CrossRefMATH
24.
Zurück zum Zitat Osorio, E. M. V. (2003). Surface reconstruction. Diploma thesis, Universidad EAFIT Escuela de Ingenieria departamento de Informatica y Sistemas Medellin. Osorio, E. M. V. (2003). Surface reconstruction. Diploma thesis, Universidad EAFIT Escuela de Ingenieria departamento de Informatica y Sistemas Medellin.
25.
Zurück zum Zitat Payne, B. A., & Toga, A. W. (1994). Surface reconstruction by multiaxial triangulation. IEEE Computer Graphics and Applications, 14, 28–35.CrossRef Payne, B. A., & Toga, A. W. (1994). Surface reconstruction by multiaxial triangulation. IEEE Computer Graphics and Applications, 14, 28–35.CrossRef
26.
Zurück zum Zitat Pekar, V., McNutt, T. R., & Kaus, M. R. (2004). Automated model-based organ delineation for radiotherapy planning in prostatic region. International Journal of Radiation Oncology, Biology, Physics, 60, 973–980. Pekar, V., McNutt, T. R., & Kaus, M. R. (2004). Automated model-based organ delineation for radiotherapy planning in prostatic region. International Journal of Radiation Oncology, Biology, Physics, 60, 973–980.
27.
Zurück zum Zitat Raut, S., Raghuvanshi, M., Dharaskar, R., & Raut, A. (2009). Image segmentation—A state-of-art survey for prediction. Proceedings of International Conference on Advanced Computer Control 2009 (pp. 420–424, ISBN 978–1–4244–3330–8), Singapore, Jan 2009, IEEE Computer Society. Raut, S., Raghuvanshi, M., Dharaskar, R., & Raut, A. (2009). Image segmentation—A state-of-art survey for prediction. Proceedings of International Conference on Advanced Computer Control 2009 (pp. 420–424, ISBN 978–1–4244–3330–8), Singapore, Jan 2009, IEEE Computer Society.
28.
Zurück zum Zitat Sakas, G. (1993). Interactive volume rendering of large fields. The Visual Computer, 9, 425–438.CrossRef Sakas, G. (1993). Interactive volume rendering of large fields. The Visual Computer, 9, 425–438.CrossRef
29.
Zurück zum Zitat Sakas, G., Karangelis, G., & Pommert, A. (2001). Advanced applications of volume visualization methods in medicine. In S. Stergiopoulos (Ed.), Advanced signal processing handbook: Theory and implementation for radar, sonar, and medical imaging real-time systems. CRC Press (ISBN 0–8493–3691–0, 2001). Sakas, G., Karangelis, G., & Pommert, A. (2001). Advanced applications of volume visualization methods in medicine. In S. Stergiopoulos (Ed.), Advanced signal processing handbook: Theory and implementation for radar, sonar, and medical imaging real-time systems. CRC Press (ISBN 0–8493–3691–0, 2001).
30.
Zurück zum Zitat Schmidt, R., Schiemann, T., Sclegel, W., Hohne, K. H., & Hubener, K. H. (1994). Consideration of time dose patterns in 3D treatment planning. An approach towards 4D treatment planning. Strahlentherapie und Onkologie, 170(5), 292–302. Schmidt, R., Schiemann, T., Sclegel, W., Hohne, K. H., & Hubener, K. H. (1994). Consideration of time dose patterns in 3D treatment planning. An approach towards 4D treatment planning. Strahlentherapie und Onkologie, 170(5), 292–302.
31.
Zurück zum Zitat Terzopoulos, D., & Fleischer, K. (1988). Deformable models. The Visual Computer, 4, 306–331.CrossRef Terzopoulos, D., & Fleischer, K. (1988). Deformable models. The Visual Computer, 4, 306–331.CrossRef
32.
Zurück zum Zitat Terzopoulos, D., Platt, J., Barr, A., & Fleicher, K. (1987). Elastically deformable models. Computer Graphics, 21(4), 205–214.CrossRef Terzopoulos, D., Platt, J., Barr, A., & Fleicher, K. (1987). Elastically deformable models. Computer Graphics, 21(4), 205–214.CrossRef
33.
Zurück zum Zitat Turk, G., & O’Brien, J. F. (1999). Shape transformation using variational implicit functions. Annual Conference on Computer Graphics (SIGGRAPH ’99), USA. Turk, G., & O’Brien, J. F. (1999). Shape transformation using variational implicit functions. Annual Conference on Computer Graphics (SIGGRAPH ’99), USA.
34.
Zurück zum Zitat Weinstein, D. (2000). Scanline surfacing: Building separating surfaces from planar contours. Proceeding of the 11th IEEE Visualization 2000 Conference, USA. Weinstein, D. (2000). Scanline surfacing: Building separating surfaces from planar contours. Proceeding of the 11th IEEE Visualization 2000 Conference, USA.
35.
Zurück zum Zitat Wells, D. M., & Niederer, J. (1998). A medical expert system approach using artificial neural networks for standardized treatment planning. International Journal of Radiation Oncology, Biology, Physics, 41, 173–182.CrossRef Wells, D. M., & Niederer, J. (1998). A medical expert system approach using artificial neural networks for standardized treatment planning. International Journal of Radiation Oncology, Biology, Physics, 41, 173–182.CrossRef
36.
Zurück zum Zitat Zimeras, S., & Karangelis, G. (2001). Semi-automatic segmentation techniques for CT medical data. 3rd caesarism Computer Aider Medicine, Bonn, Germany. Zimeras, S., & Karangelis, G. (2001). Semi-automatic segmentation techniques for CT medical data. 3rd caesarism Computer Aider Medicine, Bonn, Germany.
37.
Zurück zum Zitat Zimeras, S., Karangelis, G., & Firle, E. (2002). Object segmentation and shape reconstruction using computer-assisted segmentation tools (p. 96). San Diego, USA: SPIE Medical Imaging. Zimeras, S., Karangelis, G., & Firle, E. (2002). Object segmentation and shape reconstruction using computer-assisted segmentation tools (p. 96). San Diego, USA: SPIE Medical Imaging.
Metadaten
Titel
Shape Analysis in Radiotherapy and Tumor Surgical Planning Using Segmentation Techniques
verfasst von
S. Zimeras
L. Gortzis
Ch. Pylarinou
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-00663-5_9

Neuer Inhalt