Skip to main content
Erschienen in: Journal of Materials Science 13/2017

20.03.2017 | Original Paper

Shape and structural effects of R5-templated Pd nanomaterials as potent catalyst for oxygen electroreduction in alkaline media

verfasst von: Hongyu Yang, Chengwei Wen, Zhenghua Tang, Likai Wang, Qiannan Wang, Wei Yan, Wen Wu, Shaowei Chen

Erschienen in: Journal of Materials Science | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bio-inspired metal nanomaterials are receiving increasing research attentions in catalytic field recently, while peptide-based method represents new revenues to fabricate stable and reactive catalyst under mild and environmental friendly conditions. Among all kinds of noble metals, peptide-based palladium nanomaterials have demonstrated excellent catalytic capabilities in a variety of organic reactions. However, their electrocatalytic properties have not been systematically studied. Herein, R5-templated Pd nanomaterials have been fabricated and employed as potent catalysts for oxygen reduction reaction (ORR). The shape and morphology of these Pd nanomaterials were manipulated by tuning the metal-to-R5 ratio. The as-prepared Pd nanomaterials demonstrated excellent ORR activity in alkaline media. R5-Pd-90 exhibited the best activity which is superior than commercial Pt/C, in terms of onset potential, diffusion-limited current density as well as long-term stability. The correlation between the shape and/or morphology of the peptide-templated Pd nanomaterials and their ORR activity has been successfully established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lee YJ, Lee Y, Oh D, Chen T, Ceder G, Belcher AM (2010) Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes. Nano Lett 10:2433–2440CrossRef Lee YJ, Lee Y, Oh D, Chen T, Ceder G, Belcher AM (2010) Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes. Nano Lett 10:2433–2440CrossRef
2.
Zurück zum Zitat Lee Y, Kim J, Yun DS, Nam YS, Shao-Horn Y, Belcher AM (2012) Virus-templated Au and Au–Pt core-shell nanowires and their electrocatalytic activities for fuel cell applications. Energy Environ Sci 5:8328–8334CrossRef Lee Y, Kim J, Yun DS, Nam YS, Shao-Horn Y, Belcher AM (2012) Virus-templated Au and Au–Pt core-shell nanowires and their electrocatalytic activities for fuel cell applications. Energy Environ Sci 5:8328–8334CrossRef
3.
Zurück zum Zitat Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574CrossRef Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574CrossRef
4.
Zurück zum Zitat Yang X, Yang M, Pang B, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115:10410–10488CrossRef Yang X, Yang M, Pang B, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115:10410–10488CrossRef
5.
Zurück zum Zitat An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4:1512–1524CrossRef An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4:1512–1524CrossRef
6.
Zurück zum Zitat Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758CrossRef Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758CrossRef
7.
Zurück zum Zitat Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935–4978CrossRef Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935–4978CrossRef
8.
Zurück zum Zitat Chen C-L, Rosi NL (2010) Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed 49:1924–1942CrossRef Chen C-L, Rosi NL (2010) Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed 49:1924–1942CrossRef
9.
Zurück zum Zitat Briggs BD, Knecht MR (2012) Nanotechnology meets biology: peptide-based methods for the fabrication of functional materials. J Phys Chem Lett 3:405–418CrossRef Briggs BD, Knecht MR (2012) Nanotechnology meets biology: peptide-based methods for the fabrication of functional materials. J Phys Chem Lett 3:405–418CrossRef
10.
Zurück zum Zitat Zhang H, Jin M, Xiong Y, Lim B, Xia Y (2013) Shape-Controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46:1783–1794CrossRef Zhang H, Jin M, Xiong Y, Lim B, Xia Y (2013) Shape-Controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46:1783–1794CrossRef
11.
Zurück zum Zitat MaF Akhairi, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrog Energy 41:4214–4228CrossRef MaF Akhairi, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrog Energy 41:4214–4228CrossRef
12.
Zurück zum Zitat Coppage R, Slocik JM, Sethi M, Pacardo DB, Naik RR, Knecht MR (2010) Elucidation of peptide effects that control the activity of nanoparticles. Angew Chem Int Ed 49:3767–3770CrossRef Coppage R, Slocik JM, Sethi M, Pacardo DB, Naik RR, Knecht MR (2010) Elucidation of peptide effects that control the activity of nanoparticles. Angew Chem Int Ed 49:3767–3770CrossRef
13.
Zurück zum Zitat Coppage R, Slocik JM, Briggs BD, Frenkel AI, Heinz H, Naik RR, Knecht MR (2011) Crystallographic recognition controls peptide binding for bio-based nanomaterials. J Am Chem Soc 133:12346–12349CrossRef Coppage R, Slocik JM, Briggs BD, Frenkel AI, Heinz H, Naik RR, Knecht MR (2011) Crystallographic recognition controls peptide binding for bio-based nanomaterials. J Am Chem Soc 133:12346–12349CrossRef
14.
Zurück zum Zitat Coppage R, Slocik JM, Ramezani-Dakhel H, Bedford NM, Heinz H, Naik RR, Knecht MR (2013) Exploiting localized surface binding effects to enhance the catalytic reactivity of peptide-capped nanoparticles. J Am Chem Soc 135:11048–11054CrossRef Coppage R, Slocik JM, Ramezani-Dakhel H, Bedford NM, Heinz H, Naik RR, Knecht MR (2013) Exploiting localized surface binding effects to enhance the catalytic reactivity of peptide-capped nanoparticles. J Am Chem Soc 135:11048–11054CrossRef
15.
Zurück zum Zitat Bhandari R, Knecht MR (2011) Effects of the material structure on the catalytic activity of peptide-templated Pd nanomaterials. ACS Catal 1:89–98CrossRef Bhandari R, Knecht MR (2011) Effects of the material structure on the catalytic activity of peptide-templated Pd nanomaterials. ACS Catal 1:89–98CrossRef
16.
Zurück zum Zitat Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc 128:4510–4511CrossRef Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc 128:4510–4511CrossRef
17.
Zurück zum Zitat Crespo-Quesada M, Yarulin A, Jin M, Xia Y, Kiwi-Minsker L (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective? J Am Chem Soc 133:12787–12794CrossRef Crespo-Quesada M, Yarulin A, Jin M, Xia Y, Kiwi-Minsker L (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective? J Am Chem Soc 133:12787–12794CrossRef
18.
Zurück zum Zitat Harada T, Ikeda S, Hashimoto F, Sakata T, Ikeue K, Torimoto T, Matsumura M (2010) Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26:17720–17725CrossRef Harada T, Ikeda S, Hashimoto F, Sakata T, Ikeue K, Torimoto T, Matsumura M (2010) Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26:17720–17725CrossRef
19.
Zurück zum Zitat Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed 52:8526–8544CrossRef Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed 52:8526–8544CrossRef
20.
Zurück zum Zitat Deming CP, Mercado R, Gadiraju V, Sweeney SW, Khan M, Chen S (2015) Graphene quantum dots-supported palladium nanoparticles for efficient electrocatalytic reduction of oxygen in alkaline media. ACS Sustain Chem Eng 3:3315–3323CrossRef Deming CP, Mercado R, Gadiraju V, Sweeney SW, Khan M, Chen S (2015) Graphene quantum dots-supported palladium nanoparticles for efficient electrocatalytic reduction of oxygen in alkaline media. ACS Sustain Chem Eng 3:3315–3323CrossRef
21.
Zurück zum Zitat Jiang G, Zhu H, Zhang X, Shen B, Wu L, Zhang S, Lu G, Wu Z, Sun S (2015) Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano 9:11014–11022CrossRef Jiang G, Zhu H, Zhang X, Shen B, Wu L, Zhang S, Lu G, Wu Z, Sun S (2015) Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano 9:11014–11022CrossRef
22.
Zurück zum Zitat Zhou W, Li M, Ding OL, Chan SH, Zhang L, Xue Y (2014) Pd particle size effects on oxygen electrochemical reduction. Int J Hydrog Energy 39:6433–6442CrossRef Zhou W, Li M, Ding OL, Chan SH, Zhang L, Xue Y (2014) Pd particle size effects on oxygen electrochemical reduction. Int J Hydrog Energy 39:6433–6442CrossRef
23.
Zurück zum Zitat Tang Y, Chi X, Zou S, Zeng X (2016) Facet effects of palladium nanocrystals for oxygen reduction in ionic liquids and for sensing applications. Nanoscale 8:5771–5779CrossRef Tang Y, Chi X, Zou S, Zeng X (2016) Facet effects of palladium nanocrystals for oxygen reduction in ionic liquids and for sensing applications. Nanoscale 8:5771–5779CrossRef
24.
Zurück zum Zitat Jukk K, Alexeyeva N, Sarapuu A, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K (2013) Electroreduction of oxygen on sputter-deposited Pd nanolayers on multi-walled carbon nanotubes. Int J Hydrog Energy 38:3614–3620CrossRef Jukk K, Alexeyeva N, Sarapuu A, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K (2013) Electroreduction of oxygen on sputter-deposited Pd nanolayers on multi-walled carbon nanotubes. Int J Hydrog Energy 38:3614–3620CrossRef
25.
Zurück zum Zitat Anderson RM, Yancey DF, Zhang L, Chill ST, Henkelman G, Crooks RM (2015) A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. Acc Chem Res 48:1351–1357CrossRef Anderson RM, Yancey DF, Zhang L, Chill ST, Henkelman G, Crooks RM (2015) A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. Acc Chem Res 48:1351–1357CrossRef
26.
Zurück zum Zitat Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347CrossRef Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347CrossRef
27.
Zurück zum Zitat Naresh N, Wasim FGS, Ladewig BP, Neergat M (2013) Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics. J Mater Chem A 1:8553–8559CrossRef Naresh N, Wasim FGS, Ladewig BP, Neergat M (2013) Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics. J Mater Chem A 1:8553–8559CrossRef
28.
Zurück zum Zitat Bhandari R, Coppage R, Knecht MR (2012) Mimicking nature’s strategies for the design of nanocatalysts. Catal Sci Technol 2:256–266CrossRef Bhandari R, Coppage R, Knecht MR (2012) Mimicking nature’s strategies for the design of nanocatalysts. Catal Sci Technol 2:256–266CrossRef
29.
Zurück zum Zitat Yang H, Tang Z, Yan W, Wang L, Wang Q, Zhang Y, Liu Z, Chen S (2017) Peptide capped Pd nanoparticles for oxygen electroreduction: strong surface effects. J Alloys Compd 702:146–152CrossRef Yang H, Tang Z, Yan W, Wang L, Wang Q, Zhang Y, Liu Z, Chen S (2017) Peptide capped Pd nanoparticles for oxygen electroreduction: strong surface effects. J Alloys Compd 702:146–152CrossRef
30.
Zurück zum Zitat Knecht MR, Wright DW (2003) Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. Chem Commun (24):3038–3039 Knecht MR, Wright DW (2003) Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. Chem Commun (24):3038–3039
31.
Zurück zum Zitat Sewell SL, Wright DW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from cylindrotheca fusiformis. Chem Mater 18:3108–3113CrossRef Sewell SL, Wright DW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from cylindrotheca fusiformis. Chem Mater 18:3108–3113CrossRef
32.
Zurück zum Zitat Cole KE, Ortiz AN, Schoonen MA, Valentine AM (2006) Peptide- and long-chain polyamine- induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. Chem Mater 18:4592–4599CrossRef Cole KE, Ortiz AN, Schoonen MA, Valentine AM (2006) Peptide- and long-chain polyamine- induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. Chem Mater 18:4592–4599CrossRef
33.
Zurück zum Zitat Naik RR, Whitlock PW, Rodriguez F, Brott LL, Glawe DD, Clarson SJ, Stone MO (2003) Controlled formation of biosilica structures in vitro. Chem Commun (2):238–239 Naik RR, Whitlock PW, Rodriguez F, Brott LL, Glawe DD, Clarson SJ, Stone MO (2003) Controlled formation of biosilica structures in vitro. Chem Commun (2):238–239
34.
Zurück zum Zitat Bhandari R, Knecht MR (2012) Synthesis, characterization, and catalytic application of networked au nanostructures fabricated using peptide templates. Catal Sci Technol 2:1360–1366CrossRef Bhandari R, Knecht MR (2012) Synthesis, characterization, and catalytic application of networked au nanostructures fabricated using peptide templates. Catal Sci Technol 2:1360–1366CrossRef
35.
Zurück zum Zitat Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef
36.
Zurück zum Zitat Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28:7303–7330CrossRef Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28:7303–7330CrossRef
37.
Zurück zum Zitat Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270CrossRef Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270CrossRef
38.
Zurück zum Zitat Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384CrossRef Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384CrossRef
39.
Zurück zum Zitat Bhandari R, Pacardo DB, Bedford NM, Naik RR, Knecht MR (2013) Structural control and catalytic reactivity of peptide-templated Pd and Pt nanomaterials for olefin hydrogenation. J Phys Chem C 117:18053–18062CrossRef Bhandari R, Pacardo DB, Bedford NM, Naik RR, Knecht MR (2013) Structural control and catalytic reactivity of peptide-templated Pd and Pt nanomaterials for olefin hydrogenation. J Phys Chem C 117:18053–18062CrossRef
40.
Zurück zum Zitat Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Zhang Q, Guo Z (2016) An overview of multifunctional epoxy nanocomposites. J Mater Chem C 4:5890–5906CrossRef Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Zhang Q, Guo Z (2016) An overview of multifunctional epoxy nanocomposites. J Mater Chem C 4:5890–5906CrossRef
41.
Zurück zum Zitat Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc, Faraday Trans 87:3881–3891CrossRef Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc, Faraday Trans 87:3881–3891CrossRef
42.
Zurück zum Zitat Coppage R, Slocik JM, Briggs BD, Frenkel AI, Naik RR, Knecht MR (2012) Determining peptide sequence effects that control the size, structure, and function of nanoparticles. ACS Nano 6:1625–1636CrossRef Coppage R, Slocik JM, Briggs BD, Frenkel AI, Naik RR, Knecht MR (2012) Determining peptide sequence effects that control the size, structure, and function of nanoparticles. ACS Nano 6:1625–1636CrossRef
43.
Zurück zum Zitat He G, Song Y, Liu K, Walter A, Chen S, Chen S (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. ACS Catal 3:831–838CrossRef He G, Song Y, Liu K, Walter A, Chen S, Chen S (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. ACS Catal 3:831–838CrossRef
44.
Zurück zum Zitat Alexeyeva N, Sarapuu A, Tammeveski K, Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM (2011) Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochim Acta 56:6702–6708CrossRef Alexeyeva N, Sarapuu A, Tammeveski K, Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM (2011) Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochim Acta 56:6702–6708CrossRef
45.
Zurück zum Zitat Deming CP, Zhao A, Song Y, Liu K, Khan MM, Yates VM, Chen S (2015) Alkyne-protected AuPd alloy nanoparticles for electrocatalytic reduction of oxygen. ChemElectroChem 2:1719–1727CrossRef Deming CP, Zhao A, Song Y, Liu K, Khan MM, Yates VM, Chen S (2015) Alkyne-protected AuPd alloy nanoparticles for electrocatalytic reduction of oxygen. ChemElectroChem 2:1719–1727CrossRef
46.
Zurück zum Zitat Wang Q, Tang Z, Wang L, Yang H, Yan W, Chen S (2016) Morphology control and electro catalytic activity towards oxygen reduction of peptide-templated metal nanomaterials: a comparison between Au and Pt. ChemistrySelect 1:6044–6052CrossRef Wang Q, Tang Z, Wang L, Yang H, Yan W, Chen S (2016) Morphology control and electro catalytic activity towards oxygen reduction of peptide-templated metal nanomaterials: a comparison between Au and Pt. ChemistrySelect 1:6044–6052CrossRef
47.
Zurück zum Zitat Yan W, Tang Z, Wang L, Wang Q, Yang H, Chen S (2017) PdAu alloyed clusters supported by carbon nanosheets as efficient electrocatalysts for oxygen reduction. Int J Hydrog Energy 42:218–227CrossRef Yan W, Tang Z, Wang L, Wang Q, Yang H, Chen S (2017) PdAu alloyed clusters supported by carbon nanosheets as efficient electrocatalysts for oxygen reduction. Int J Hydrog Energy 42:218–227CrossRef
48.
Zurück zum Zitat Zadick A, Dubau L, Demirci UB, Chatenet M (2016) Effects of Pd nanoparticle size and solution reducer strength on Pd/C electrocatalyst stability in alkaline electrolyte. J Electrochem Soc 163:F781–F787CrossRef Zadick A, Dubau L, Demirci UB, Chatenet M (2016) Effects of Pd nanoparticle size and solution reducer strength on Pd/C electrocatalyst stability in alkaline electrolyte. J Electrochem Soc 163:F781–F787CrossRef
49.
Zurück zum Zitat Wang L, Tang Z, Yan W, Wang Q, Yang H, Chen S (2017) Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J Power Sources 343:458–466CrossRef Wang L, Tang Z, Yan W, Wang Q, Yang H, Chen S (2017) Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J Power Sources 343:458–466CrossRef
50.
Zurück zum Zitat Ding L-X, Wang A-L, Li G-R, Liu Z-Q, Zhao W-X, Su C-Y, Tong Y-X (2012) Porous Pt–Ni–P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J Am Chem Soc 134:5730–5733CrossRef Ding L-X, Wang A-L, Li G-R, Liu Z-Q, Zhao W-X, Su C-Y, Tong Y-X (2012) Porous Pt–Ni–P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J Am Chem Soc 134:5730–5733CrossRef
51.
Zurück zum Zitat Zhou Z-Y, Kang X, Song Y, Chen S (2011) Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid. Chem Commun 47:6075–6077CrossRef Zhou Z-Y, Kang X, Song Y, Chen S (2011) Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid. Chem Commun 47:6075–6077CrossRef
52.
Zurück zum Zitat Zhang X, Xiao Q, Zhang Y, Jiang X, Yang Z, Xue Y, Yan Y-M, Sun K (2014) La2O3 doped carbonaceous microspheres: a novel bifunctional electrocatalyst for oxygen reduction and evolution reactions with ultrahigh mass activity. J Phys Chem C 118:20229–20237CrossRef Zhang X, Xiao Q, Zhang Y, Jiang X, Yang Z, Xue Y, Yan Y-M, Sun K (2014) La2O3 doped carbonaceous microspheres: a novel bifunctional electrocatalyst for oxygen reduction and evolution reactions with ultrahigh mass activity. J Phys Chem C 118:20229–20237CrossRef
53.
Zurück zum Zitat Tang W, Lin H, Kleiman-Shwarsctein A, Stucky GD, Mcfarland EW (2008) Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte. J Phys Chem C 112:10515–10519CrossRef Tang W, Lin H, Kleiman-Shwarsctein A, Stucky GD, Mcfarland EW (2008) Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte. J Phys Chem C 112:10515–10519CrossRef
54.
Zurück zum Zitat Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48:4386–4389CrossRef Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48:4386–4389CrossRef
55.
Zurück zum Zitat Kondo S, Nakamura M, Maki N, Hoshi N (2009) Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 113:12625–12628CrossRef Kondo S, Nakamura M, Maki N, Hoshi N (2009) Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 113:12625–12628CrossRef
56.
Zurück zum Zitat Xiao L, Zhuang L, Liu Y, Lu J, Abruña HD (2009) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131:602–608CrossRef Xiao L, Zhuang L, Liu Y, Lu J, Abruña HD (2009) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131:602–608CrossRef
57.
Zurück zum Zitat Shao M, Yu T, Odell JH, Jin M, Xia Y (2011) Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem Commun 47:6566–6568CrossRef Shao M, Yu T, Odell JH, Jin M, Xia Y (2011) Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem Commun 47:6566–6568CrossRef
58.
Zurück zum Zitat Shao M, Odell J, Humbert M, Yu T, Xia Y (2013) Electrocatalysis on shape-controlled palladium nanocrystals: oxygen reduction reaction and formic acid oxidation. J Phys Chem C 117:4172–4180CrossRef Shao M, Odell J, Humbert M, Yu T, Xia Y (2013) Electrocatalysis on shape-controlled palladium nanocrystals: oxygen reduction reaction and formic acid oxidation. J Phys Chem C 117:4172–4180CrossRef
59.
Zurück zum Zitat Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2011) Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 13:734–737CrossRef Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2011) Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 13:734–737CrossRef
60.
Zurück zum Zitat Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu JM (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335CrossRef Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu JM (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335CrossRef
Metadaten
Titel
Shape and structural effects of R5-templated Pd nanomaterials as potent catalyst for oxygen electroreduction in alkaline media
verfasst von
Hongyu Yang
Chengwei Wen
Zhenghua Tang
Likai Wang
Qiannan Wang
Wei Yan
Wen Wu
Shaowei Chen
Publikationsdatum
20.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1004-y

Weitere Artikel der Ausgabe 13/2017

Journal of Materials Science 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.