Skip to main content
Erschienen in: Numerical Algorithms 3/2020

18.05.2019 | Original Paper

Sharp H1-norm error estimate of a cosine pseudo-spectral scheme for 2D reaction-subdiffusion equations

verfasst von: Xin Li, Luming Zhang, Hong-lin Liao

Erschienen in: Numerical Algorithms | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A finite difference cosine pseudo-spectral scheme is presented for solving a linear reaction-subdiffusion problem with Neumann boundary conditions. The nonuniform version of L1 formula is employed for approximating the Caputo fractional derivative, and a cosine pseudo-spectral approximation is utilized in spatial discretization. With the help of discrete fractional Grönwall inequality and global consistency analysis, sharp H1-norm error estimate reflecting the regularity of solution is verified for the proposed method. A fast algorithm is implemented in computation and numerical results confirm the sharpness of our analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
2.
Zurück zum Zitat Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000) Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000)
3.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef
4.
Zurück zum Zitat Meerschaert, M.M., Benson, D., Baeumer, B.: Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 1112–1117 (2001)CrossRef Meerschaert, M.M., Benson, D., Baeumer, B.: Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 1112–1117 (2001)CrossRef
5.
Zurück zum Zitat Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 39, 1022–1032 (2003) Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 39, 1022–1032 (2003)
6.
Zurück zum Zitat Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRef Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRef
7.
Zurück zum Zitat Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef
8.
Zurück zum Zitat Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRef Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRef
9.
Zurück zum Zitat Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)MathSciNetCrossRef Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D frational subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRef Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D frational subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRef
11.
12.
Zurück zum Zitat Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)MathSciNetMATH Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)MathSciNetMATH
13.
Zurück zum Zitat Sakamoto, K., Yamamoto, M.: Initial value/boundary value prolems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef Sakamoto, K., Yamamoto, M.: Initial value/boundary value prolems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef
14.
Zurück zum Zitat Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Zhang, Y.N., Sun, Z.Z., Liao, H. -L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRef Zhang, Y.N., Sun, Z.Z., Liao, H. -L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat Liao, H.-L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRef Liao, H.-L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRef
17.
Zurück zum Zitat Liao, H.-L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)MathSciNetCrossRef Liao, H.-L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)MathSciNetCrossRef
19.
Zurück zum Zitat Liao, H.-L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. (2018) arXiv:1803.09873v2 Liao, H.-L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. (2018) arXiv:1803.​09873v2
20.
Zurück zum Zitat Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)CrossRef Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)CrossRef
21.
Zurück zum Zitat Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRef Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRef
22.
Zurück zum Zitat Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6601–6074 (2011)MathSciNet Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6601–6074 (2011)MathSciNet
23.
Zurück zum Zitat Ren, J.C., Sun, Z.Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)MathSciNetCrossRef Ren, J.C., Sun, Z.Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)MathSciNetCrossRef
24.
Zurück zum Zitat Cao, J.X., Li, C.P., Chen, Y.Q.: Compact difference method for solving the fractional reaction subdiffusion equation with Neumann boundary value condition. Int. J. Comput. Math. 92, 167–180 (2015)MathSciNetCrossRef Cao, J.X., Li, C.P., Chen, Y.Q.: Compact difference method for solving the fractional reaction subdiffusion equation with Neumann boundary value condition. Int. J. Comput. Math. 92, 167–180 (2015)MathSciNetCrossRef
25.
Zurück zum Zitat Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef
26.
Zurück zum Zitat Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetCrossRef Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetCrossRef
27.
Zurück zum Zitat Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)MathSciNetCrossRef Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)MathSciNetCrossRef
28.
Zurück zum Zitat Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algo. 73, 91–113 (2016)MathSciNetCrossRef Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algo. 73, 91–113 (2016)MathSciNetCrossRef
29.
Zurück zum Zitat Gong, Y.Z., Cai, J.X., Wang, Y.S.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)MathSciNetCrossRef Gong, Y.Z., Cai, J.X., Wang, Y.S.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)MathSciNetCrossRef
30.
Zurück zum Zitat Gong, Y.Z., Wang, Q., Wang, Y.S., Cai, J.X.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)MathSciNetCrossRef Gong, Y.Z., Wang, Q., Wang, Y.S., Cai, J.X.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)MathSciNetCrossRef
31.
Zurück zum Zitat Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef
32.
Zurück zum Zitat Ren, J.C., Liao, H.-L., Zhang, J.W., Zhang, Z.M.: Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. (2018) arXiv:1811.08059v1 Ren, J.C., Liao, H.-L., Zhang, J.W., Zhang, Z.M.: Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. (2018) arXiv:1811.​08059v1
33.
Zurück zum Zitat Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)MathSciNetCrossRef Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)MathSciNetCrossRef
Metadaten
Titel
Sharp H1-norm error estimate of a cosine pseudo-spectral scheme for 2D reaction-subdiffusion equations
verfasst von
Xin Li
Luming Zhang
Hong-lin Liao
Publikationsdatum
18.05.2019
Verlag
Springer US
Erschienen in
Numerical Algorithms / Ausgabe 3/2020
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00722-w

Weitere Artikel der Ausgabe 3/2020

Numerical Algorithms 3/2020 Zur Ausgabe