Skip to main content
Erschienen in: Applied Composite Materials 2/2019

24.07.2018

Shepard Interpolation Based on Geodesic Distance for Optimization of Fiber Reinforced Composite Structures with Non-Convex Shape

verfasst von: Ye Tian, Junxin Mou, Tielin Shi, Qi Xia

Erschienen in: Applied Composite Materials | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, we propose to define the Shepard interpolation by using the geodesic distance. The geodesic distance between a pair of points is the length of the shortest geodesic line, and geodesic line is the generalization of straight line in the Euclidean geometry to general spaces, for instance 3D surfaces. When the shape of structure is non-convex, the geodesic distance is more reasonable than the Euclidean distance to define influence domain for interpolation points. In view of the fact that the length of a geodesic line can be considered as the time it takes to go with a certain velocity from one point to another, the fast marching method is used to compute the geodesic distance. In the design optimization of fiber reinforced composite structures, the proposed Shepard interpolation based on geodesic distance is used to construct a continuous global function that represents the fiber angle arrangement. The design variables to be optimized are the angles at scattered design points. Several examples with in-plane load are investigated. In the simple representative numerical examples, the proposed method shows good performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part I: Constant stiffness design. Compos. Struct. 90, 1–11 (2009)CrossRef Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part I: Constant stiffness design. Compos. Struct. 90, 1–11 (2009)CrossRef
2.
Zurück zum Zitat Ghiasi, H., Fayazbakhsh, K., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part II: Variable stiffness design. Compos. Struct. 93, 1–13 (2010)CrossRef Ghiasi, H., Fayazbakhsh, K., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part II: Variable stiffness design. Compos. Struct. 93, 1–13 (2010)CrossRef
3.
Zurück zum Zitat Lozano, G.G., Tiwari, A., Turner, C., Astwood, S.: A review on design for manufacture of variable stiffness composite laminates. Proc. IME. B. J. Eng. Manufact. 230(6), 981–992 (2016)CrossRef Lozano, G.G., Tiwari, A., Turner, C., Astwood, S.: A review on design for manufacture of variable stiffness composite laminates. Proc. IME. B. J. Eng. Manufact. 230(6), 981–992 (2016)CrossRef
4.
Zurück zum Zitat Sabido, A., Bahamonde, L., Harik, R., van Tooren, M.J.L.: Maturity assessment of the laminate variable stiffness design process. Compos. Struct. 160, 804–812 (2017)CrossRef Sabido, A., Bahamonde, L., Harik, R., van Tooren, M.J.L.: Maturity assessment of the laminate variable stiffness design process. Compos. Struct. 160, 804–812 (2017)CrossRef
5.
Zurück zum Zitat Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)CrossRef Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)CrossRef
6.
Zurück zum Zitat Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)CrossRef Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)CrossRef
7.
Zurück zum Zitat Xia, L., Xia, Q., Huang, X.D., Xie, Y.M.: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch. Computat. Methods Eng. 25, 437–478 (2018)CrossRef Xia, L., Xia, Q., Huang, X.D., Xie, Y.M.: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch. Computat. Methods Eng. 25, 437–478 (2018)CrossRef
8.
Zurück zum Zitat Xia, Q., Shi, T.: Topology optimization of compliant mechanism and its support through a level set method. Comput. Methods Appl. Mech. Eng. 305, 359–375 (2016a)CrossRef Xia, Q., Shi, T.: Topology optimization of compliant mechanism and its support through a level set method. Comput. Methods Appl. Mech. Eng. 305, 359–375 (2016a)CrossRef
9.
Zurück zum Zitat Xia, Q., Shi, T.: Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method. Comput. Methods Appl. Mech. Eng. 311, 56–70 (2016b)CrossRef Xia, Q., Shi, T.: Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method. Comput. Methods Appl. Mech. Eng. 311, 56–70 (2016b)CrossRef
10.
Zurück zum Zitat Xia, Q., Xia, L., Shi, T.L.: Topology optimization of thermal actuator and its support using the level set based multiple–type boundary method and sensitivity analysis based on constrained variational principle. Struct. Multidiscip. Optim. 57, 1317–1327 (2018)CrossRef Xia, Q., Xia, L., Shi, T.L.: Topology optimization of thermal actuator and its support using the level set based multiple–type boundary method and sensitivity analysis based on constrained variational principle. Struct. Multidiscip. Optim. 57, 1317–1327 (2018)CrossRef
11.
Zurück zum Zitat Pedersen, P.: On thickness and orientational design with orthotropic materials. Struct. Optim. 3, 69–78 (1991)CrossRef Pedersen, P.: On thickness and orientational design with orthotropic materials. Struct. Optim. 3, 69–78 (1991)CrossRef
12.
Zurück zum Zitat Luo, J.H., Gea, H.C.: Optimal bead orientation of 3d shell/plate structures. Finite Elem. Anal. Des. 31, 55–71 (1998a)CrossRef Luo, J.H., Gea, H.C.: Optimal bead orientation of 3d shell/plate structures. Finite Elem. Anal. Des. 31, 55–71 (1998a)CrossRef
13.
Zurück zum Zitat Luo, J.H., Gea, H.C.: Optimal orientation of orthotropic materials using an energy based method. Struct. Optim. 15, 230–236 (1998b)CrossRef Luo, J.H., Gea, H.C.: Optimal orientation of orthotropic materials using an energy based method. Struct. Optim. 15, 230–236 (1998b)CrossRef
14.
Zurück zum Zitat Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Meth. Eng. 62(14), 2009–2027 (2005)CrossRef Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Meth. Eng. 62(14), 2009–2027 (2005)CrossRef
15.
Zurück zum Zitat Bruyneel, M.: SFP–a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct. Multidiscip. Optim. 43, 17–27 (2011)CrossRef Bruyneel, M.: SFP–a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct. Multidiscip. Optim. 43, 17–27 (2011)CrossRef
16.
Zurück zum Zitat Gao, T., Zhang, W.H., Duysinx, P.: A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int. J. Numer. Meth. Eng. 91, 98–114 (2012)CrossRef Gao, T., Zhang, W.H., Duysinx, P.: A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int. J. Numer. Meth. Eng. 91, 98–114 (2012)CrossRef
17.
Zurück zum Zitat Gao, T., Zhang, W.H., Duysinx, P.: Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct. Multidiscip. Optim. 48, 1075–1088 (2013)CrossRef Gao, T., Zhang, W.H., Duysinx, P.: Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct. Multidiscip. Optim. 48, 1075–1088 (2013)CrossRef
18.
Zurück zum Zitat Niu, B., Olhoff, N., Lund, E., Cheng, G.: Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int. J. of Solids Struct. 47, 2097–2114 (2010)CrossRef Niu, B., Olhoff, N., Lund, E., Cheng, G.: Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int. J. of Solids Struct. 47, 2097–2114 (2010)CrossRef
19.
Zurück zum Zitat Hvejsel, C.F., Lund, E.: Material interpolation schemes for unified topology and multimaterial optimization. Struct. Multidiscip. Optim. 43, 811–825 (2011)CrossRef Hvejsel, C.F., Lund, E.: Material interpolation schemes for unified topology and multimaterial optimization. Struct. Multidiscip. Optim. 43, 811–825 (2011)CrossRef
20.
Zurück zum Zitat Olmedo, R., Gürdal, Z.: Buckling Response of Laminates with Spatially Varying Fiber Orientations. In: 34Th Structures, Structural Dynamics and Materials Conference, La Jolla, CA, U.S.A (1993) Olmedo, R., Gürdal, Z.: Buckling Response of Laminates with Spatially Varying Fiber Orientations. In: 34Th Structures, Structural Dynamics and Materials Conference, La Jolla, CA, U.S.A (1993)
21.
Zurück zum Zitat Blom, A., Setoodeh, S., Hol, J.M.: Design of variable-stiffness conical shells for maximum fundamental eigenfrequency. Comput. Struct. 86, 870–878 (2008)CrossRef Blom, A., Setoodeh, S., Hol, J.M.: Design of variable-stiffness conical shells for maximum fundamental eigenfrequency. Comput. Struct. 86, 870–878 (2008)CrossRef
22.
Zurück zum Zitat Blom, A., Tatting, B.F., Hol, J.M.: Fiber path definitions for elastically tailored conical shells. Compos. Part B-Eng. 40, 77–84 (2009)CrossRef Blom, A., Tatting, B.F., Hol, J.M.: Fiber path definitions for elastically tailored conical shells. Compos. Part B-Eng. 40, 77–84 (2009)CrossRef
23.
Zurück zum Zitat Parnas, L., Oral, S., Ceyhan, U.: Optimum design of composite structures with curved fiber courses. Compos. Sci. Technol. 63, 1071–1082 (2003)CrossRef Parnas, L., Oral, S., Ceyhan, U.: Optimum design of composite structures with curved fiber courses. Compos. Sci. Technol. 63, 1071–1082 (2003)CrossRef
24.
Zurück zum Zitat Liu, B., Haftka, R.T., Trompette, P.: Maximization of buckling loads of composite panels using flexural lamination parameters. Struct. Multidiscip. Optim. 26, 28–36 (2004)CrossRef Liu, B., Haftka, R.T., Trompette, P.: Maximization of buckling loads of composite panels using flexural lamination parameters. Struct. Multidiscip. Optim. 26, 28–36 (2004)CrossRef
25.
Zurück zum Zitat Ijsselmuiden, S.T., Abdalla, M., Gürdal, Z.: Implementation of strength-based failure criteria in the lamination parameter design space. AIAA J. 46, 1826–1834 (2008)CrossRef Ijsselmuiden, S.T., Abdalla, M., Gürdal, Z.: Implementation of strength-based failure criteria in the lamination parameter design space. AIAA J. 46, 1826–1834 (2008)CrossRef
26.
Zurück zum Zitat Bohrerolar, R.Z.G., Almeida, S.F.M.D., Donadon, M.V.: Optimization of composite plates subjected to buckling and small mass impact using lamination parameters. Compos. Struct. 120, 141–152 (2015)CrossRef Bohrerolar, R.Z.G., Almeida, S.F.M.D., Donadon, M.V.: Optimization of composite plates subjected to buckling and small mass impact using lamination parameters. Compos. Struct. 120, 141–152 (2015)CrossRef
27.
Zurück zum Zitat Bruyneel, M., Zein, S.: A modified fast marching method for defining fiber placement trajectories over meshes. Comput. Struct. 125, 45–52 (2013)CrossRef Bruyneel, M., Zein, S.: A modified fast marching method for defining fiber placement trajectories over meshes. Comput. Struct. 125, 45–52 (2013)CrossRef
28.
Zurück zum Zitat Brampton, C.J., Wu, K.C., Kim, H.A.: New optimization method for steered fiber composites using the level set method. Struct. Multidiscip. Optim. 52, 493–505 (2015)CrossRef Brampton, C.J., Wu, K.C., Kim, H.A.: New optimization method for steered fiber composites using the level set method. Struct. Multidiscip. Optim. 52, 493–505 (2015)CrossRef
29.
Zurück zum Zitat Lemaire, E., Zein, S., Bruyneel, M.: Optimization of composite structures with curved fiber trajectories. Compos. Struct. 131, 895–904 (2015)CrossRef Lemaire, E., Zein, S., Bruyneel, M.: Optimization of composite structures with curved fiber trajectories. Compos. Struct. 131, 895–904 (2015)CrossRef
30.
Zurück zum Zitat Kiyono, C.Y., Silva, E.C.N., Reddy, J.N.: A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos. Struct. 160, 503–515 (2016)CrossRef Kiyono, C.Y., Silva, E.C.N., Reddy, J.N.: A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos. Struct. 160, 503–515 (2016)CrossRef
31.
Zurück zum Zitat Nomura, T., Dede, E.M., Lee, J., Yamasaki, S., Matsumori, T., Kawamoto, A., Kikuchi, N.: General topology optimization method with continuous and discrete orientation design using isoparametric projection. Int. J. Numer. Meth. Eng. 101, 571–605 (2015)CrossRef Nomura, T., Dede, E.M., Lee, J., Yamasaki, S., Matsumori, T., Kawamoto, A., Kikuchi, N.: General topology optimization method with continuous and discrete orientation design using isoparametric projection. Int. J. Numer. Meth. Eng. 101, 571–605 (2015)CrossRef
32.
Zurück zum Zitat Setoodeh, S., Abdalla, M.M., Gürdal, Z.: Combined topology and fiber path design of composite layers using ellular automata. Struct. Multidiscip. Optim. 30, 412–421 (2005)CrossRef Setoodeh, S., Abdalla, M.M., Gürdal, Z.: Combined topology and fiber path design of composite layers using ellular automata. Struct. Multidiscip. Optim. 30, 412–421 (2005)CrossRef
33.
Zurück zum Zitat Xia, Q., Shi, T.L.: Optimization of composite structures with continuous spatial variation of fiber angle through shepard interpolation. Compos. Struct. 182, 273–282 (2017)CrossRef Xia, Q., Shi, T.L.: Optimization of composite structures with continuous spatial variation of fiber angle through shepard interpolation. Compos. Struct. 182, 273–282 (2017)CrossRef
34.
Zurück zum Zitat Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd National Conference, pp 517–523. ACM, New York (1968) Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd National Conference, pp 517–523. ACM, New York (1968)
35.
Zurück zum Zitat Brodlie, K., Asim, M., Unsworth, K.: Constrained visualization using the Shepard interpolation family. Computer Graphics Forum 24, 809–820 (2005)CrossRef Brodlie, K., Asim, M., Unsworth, K.: Constrained visualization using the Shepard interpolation family. Computer Graphics Forum 24, 809–820 (2005)CrossRef
36.
Zurück zum Zitat Lodha, S.K., Franke, R.: Scattered Data Techniques for Surfaces. In: Scientific Visualization Conference, pp 189–230. Dagstuhl, Germany (1997) Lodha, S.K., Franke, R.: Scattered Data Techniques for Surfaces. In: Scientific Visualization Conference, pp 189–230. Dagstuhl, Germany (1997)
37.
Zurück zum Zitat Belytschko, T., Lu, Y.Y., Gu, L.: Element–free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)CrossRef Belytschko, T., Lu, Y.Y., Gu, L.: Element–free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)CrossRef
38.
Zurück zum Zitat Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Liu, W.K.: Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math 74, 111–126 (1996)CrossRef Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Liu, W.K.: Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math 74, 111–126 (1996)CrossRef
39.
Zurück zum Zitat Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18, 225–235 (1996)CrossRef Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18, 225–235 (1996)CrossRef
40.
Zurück zum Zitat Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer (2008) Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer (2008)
41.
Zurück zum Zitat Kimmel, R., Amir, A., Bruckstein, A.M.: Finding shortest paths on surfaces using level sets propagation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 635–640 (1995)CrossRef Kimmel, R., Amir, A., Bruckstein, A.M.: Finding shortest paths on surfaces using level sets propagation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 635–640 (1995)CrossRef
42.
Zurück zum Zitat Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)CrossRef Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)CrossRef
43.
Zurück zum Zitat Sethian, J.A. Cambridge Monographs on Applied and Computational Mathematics: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, 2nd. Cambridge University Press, Cambridge (1999) Sethian, J.A. Cambridge Monographs on Applied and Computational Mathematics: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, 2nd. Cambridge University Press, Cambridge (1999)
44.
Zurück zum Zitat Kang, Z., Wang, Y.Q.: Structural topology optimization based on non-local Shepard interpolation of density field. Comput. Methods Appl. Mech. Eng. 200, 3515–3525 (2011)CrossRef Kang, Z., Wang, Y.Q.: Structural topology optimization based on non-local Shepard interpolation of density field. Comput. Methods Appl. Mech. Eng. 200, 3515–3525 (2011)CrossRef
45.
Zurück zum Zitat Kang, Z., Wang, Y.Q.: A nodal variable method of structural topology optimization based on Shepard interpolant. Int. J. Numer. Meth. Eng. 90, 329–342 (2012)CrossRef Kang, Z., Wang, Y.Q.: A nodal variable method of structural topology optimization based on Shepard interpolant. Int. J. Numer. Meth. Eng. 90, 329–342 (2012)CrossRef
46.
Zurück zum Zitat Luo, Z., Zhang, N., Wang, Y., Gao, W.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Meth. Eng. 93, 443–464 (2013)CrossRef Luo, Z., Zhang, N., Wang, Y., Gao, W.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Meth. Eng. 93, 443–464 (2013)CrossRef
47.
Zurück zum Zitat Wang, Y.Q., Kang, Z., He, Q.Z.: Adaptive topology optimization with independent error control for separated displacement and density fields. Comput. Struct. 135, 50–61 (2014)CrossRef Wang, Y.Q., Kang, Z., He, Q.Z.: Adaptive topology optimization with independent error control for separated displacement and density fields. Comput. Struct. 135, 50–61 (2014)CrossRef
48.
Zurück zum Zitat Wang, Y.Q., Kang, Z., He, Q.Z.: An adaptive refinement approach for topology optimization based on separated density field description. Comput. Struct. 117, 10–22 (2013)CrossRef Wang, Y.Q., Kang, Z., He, Q.Z.: An adaptive refinement approach for topology optimization based on separated density field description. Comput. Struct. 117, 10–22 (2013)CrossRef
49.
Zurück zum Zitat Farwig, R.: Rate of convergence of Shepard’s global interpolation formula. Math Comp 46, 577–590 (1986) Farwig, R.: Rate of convergence of Shepard’s global interpolation formula. Math Comp 46, 577–590 (1986)
50.
Zurück zum Zitat Xia, Q., Shi, T.L.: A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on shepard interpolation. Compos. Struct. 188, 209–219 (2018)CrossRef Xia, Q., Shi, T.L.: A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on shepard interpolation. Compos. Struct. 188, 209–219 (2018)CrossRef
51.
Zurück zum Zitat Xia, Q., Shi, T.L.: Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization. Comput. Methods Appl. Mech. Eng. 295, 525–542 (2015)CrossRef Xia, Q., Shi, T.L.: Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization. Comput. Methods Appl. Mech. Eng. 295, 525–542 (2015)CrossRef
52.
Zurück zum Zitat Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169, 503–555 (2001)CrossRef Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169, 503–555 (2001)CrossRef
53.
Zurück zum Zitat Wang, X.M., Wang, M.Y., Guo, D.M.: Structural shape and topology optimization in a level-set framework of region representation. Struct. Multidiscip. Optim. 27, 1–19 (2004)CrossRef Wang, X.M., Wang, M.Y., Guo, D.M.: Structural shape and topology optimization in a level-set framework of region representation. Struct. Multidiscip. Optim. 27, 1–19 (2004)CrossRef
54.
Zurück zum Zitat Mei, Y., Wang, X.: A level set method for structural topology optimization and its applications. Adv. Eng. Softw. 35, 415–441 (2004)CrossRef Mei, Y., Wang, X.: A level set method for structural topology optimization and its applications. Adv. Eng. Softw. 35, 415–441 (2004)CrossRef
Metadaten
Titel
Shepard Interpolation Based on Geodesic Distance for Optimization of Fiber Reinforced Composite Structures with Non-Convex Shape
verfasst von
Ye Tian
Junxin Mou
Tielin Shi
Qi Xia
Publikationsdatum
24.07.2018
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 2/2019
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-018-9731-z

Weitere Artikel der Ausgabe 2/2019

Applied Composite Materials 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.