Skip to main content

06.03.2025 | Original Paper

Short-term power forecasting of photovoltaic generation based on CFOA-CNN-BiLSTM-Attention

verfasst von: Bing Li, Haizheng Wang, Jinghua Zhang

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Under the goal of ‘double carbon’, the penetration of photovoltaic (PV) power generation in the power system is increasing, and in view of the strong volatility and high stochasticity of PV power output, reliable PV power prediction can provide a reference for the development of scheduling plans and improve the stability and reliability of power grid operation. Traditional deep neural networks are prone to problems such as local optimality, slow convergence speed, and poor prediction results due to insufficient feature extraction capability. In order to improve the prediction accuracy, a deep neural network photovoltaic power generation short-term prediction model integrating the capture optimisation algorithm (CFOA), convolutional neural network (CNN), bidirectional long and short-term memory network (BiLSTM), and attention mechanism (AM) is proposed. Firstly, the spatial features of the data are extracted using the CNN method and input to the next layer, and the temporal features implicit in the spatial feature information are extracted using the BiLSTM method and the extracted spatial and temporal features are input to the next layer; then, the self-attention mechanism is incorporated to define the relative importance in order to capture the long-term dependency relationship between each of the input elements, and the weights of extracted input features are automatically assigned. After that, the CFOA optimisation algorithm is introduced for model hyper-parameter optimisation, and the prediction model is built to obtain the predicted values of PV power generation; finally, the model is validated using actual data from a PV power station. The results show that the proposed combined prediction method has better prediction stability and accuracy in short-term PV power prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yingfei Z, Zongxiang L, Ying Q et al (2016) An overview of photovoltaic energy system output forecasting technology. Autom Electr Power Syst 40(4):140–151MATH Yingfei Z, Zongxiang L, Ying Q et al (2016) An overview of photovoltaic energy system output forecasting technology. Autom Electr Power Syst 40(4):140–151MATH
2.
Zurück zum Zitat Xiaoyan L, Jue W, Tiechui Y et al (2022) Ultrashort-term distributed photovoltaic power prediction based on satellite remote sensing. Trans China Electrotech Soc 37(7):1800–1809 Xiaoyan L, Jue W, Tiechui Y et al (2022) Ultrashort-term distributed photovoltaic power prediction based on satellite remote sensing. Trans China Electrotech Soc 37(7):1800–1809
3.
Zurück zum Zitat Zhen Q, Shibo C, Yuqing G et al (2015) Summary of research on photovoltaic power generation power prediction methods. Mech Electr Eng 32(5):651–659MATH Zhen Q, Shibo C, Yuqing G et al (2015) Summary of research on photovoltaic power generation power prediction methods. Mech Electr Eng 32(5):651–659MATH
4.
Zurück zum Zitat Wei C, Xin A, Tao W et al (2013) Review of the influence of photovoltaic grid-connected power generation system on power grid. Electr Power Autom Equip 33(02):26–32MATH Wei C, Xin A, Tao W et al (2013) Review of the influence of photovoltaic grid-connected power generation system on power grid. Electr Power Autom Equip 33(02):26–32MATH
5.
Zurück zum Zitat Mellit A, Massi Pavan A, Ogliari E et al (2020) Advanced methods for photovoltaic output power forecasting: a review. Appl Sci 10(2):487CrossRefMATH Mellit A, Massi Pavan A, Ogliari E et al (2020) Advanced methods for photovoltaic output power forecasting: a review. Appl Sci 10(2):487CrossRefMATH
6.
Zurück zum Zitat Milad HS, Farooq U, El-Hawary ME et al (2017) Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction. IEEE Access 5(1):1037–1049CrossRef Milad HS, Farooq U, El-Hawary ME et al (2017) Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction. IEEE Access 5(1):1037–1049CrossRef
9.
Zurück zum Zitat Wu S (2021) Review of power prediction methods of photovoltaic power generation system. Eng Thermal Energy Power 36(08):1–7MATH Wu S (2021) Review of power prediction methods of photovoltaic power generation system. Eng Thermal Energy Power 36(08):1–7MATH
10.
Zurück zum Zitat Dong C, Wang Z, Bai J, Jiang J et al. (2023) Review of ultra-short-term prediction methods of photovoltaic power generation[J/OL]. High Voltage Technology: 1–13[–05–08] Dong C, Wang Z, Bai J, Jiang J et al. (2023) Review of ultra-short-term prediction methods of photovoltaic power generation[J/OL]. High Voltage Technology: 1–13[–05–08]
12.
Zurück zum Zitat Mellit A (2021) An overview on the application of machine learning and deep learning for photovoltaic output power forecasting. In: Hajji B, Mellit A, Tina GM, Rabhi A, Launay J, Naimi SE (eds) Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2020, 13-15 April 2020, Saidia, Morocco. Springer Singapore, Singapore, pp 55–68. https://doi.org/10.1007/978-981-15-6259-4_4CrossRefMATH Mellit A (2021) An overview on the application of machine learning and deep learning for photovoltaic output power forecasting. In: Hajji B, Mellit A, Tina GM, Rabhi A, Launay J, Naimi SE (eds) Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2020, 13-15 April 2020, Saidia, Morocco. Springer Singapore, Singapore, pp 55–68. https://​doi.​org/​10.​1007/​978-981-15-6259-4_​4CrossRefMATH
14.
Zurück zum Zitat Lingjian M (2019) Research on short-term photovoltaic power forecast based on dynamic weighted combination method. Northeast Dianli University, JilinMATH Lingjian M (2019) Research on short-term photovoltaic power forecast based on dynamic weighted combination method. Northeast Dianli University, JilinMATH
15.
Zurück zum Zitat Jiawei Z, Zijia Z (2012) Short-term photovoltaic system power generation prediction based on PSO-BP neural network. Renew Energy Resour 30(08):28–32 Jiawei Z, Zijia Z (2012) Short-term photovoltaic system power generation prediction based on PSO-BP neural network. Renew Energy Resour 30(08):28–32
16.
Zurück zum Zitat Qiongfeng Z, Jiateng Li, Ji Q et al (2023) Application and prospect of artificial intelligence technology in new energy power prediction. Proc CSEE 43(08):3027–3048MATH Qiongfeng Z, Jiateng Li, Ji Q et al (2023) Application and prospect of artificial intelligence technology in new energy power prediction. Proc CSEE 43(08):3027–3048MATH
17.
Zurück zum Zitat Shaohua X, Shan He, Xueqin Y et al (2022) Short-term power prediction of photovoltaic based on SSA-BP neural network. J Zhejiang Univ Technol 50(06):628–633MATH Shaohua X, Shan He, Xueqin Y et al (2022) Short-term power prediction of photovoltaic based on SSA-BP neural network. J Zhejiang Univ Technol 50(06):628–633MATH
18.
Zurück zum Zitat Shaojian S, Bohan Li (2021) Research on short-term prediction method of photovoltaic power generation based on LSTM network. Renew Energy 39(05):594–660MATH Shaojian S, Bohan Li (2021) Research on short-term prediction method of photovoltaic power generation based on LSTM network. Renew Energy 39(05):594–660MATH
19.
Zurück zum Zitat Bing Z (2024) Research and application of photovoltaic forecasting and load forecasting algorithm based on CNN-LSTM composite model. Saf Health Environ 24(06):14–19MATH Bing Z (2024) Research and application of photovoltaic forecasting and load forecasting algorithm based on CNN-LSTM composite model. Saf Health Environ 24(06):14–19MATH
20.
Zurück zum Zitat Tang YG, Yang K, Zhang SJ et al (2022) Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renew Sustain Energy Rev 162:112473CrossRef Tang YG, Yang K, Zhang SJ et al (2022) Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renew Sustain Energy Rev 162:112473CrossRef
22.
Zurück zum Zitat Chen Y, Xu J (2022) Solar and win power data from the Chinese State Grid Renewable Energe Generation Forecasting Competition. Sci Data 91:577CrossRefMATH Chen Y, Xu J (2022) Solar and win power data from the Chinese State Grid Renewable Energe Generation Forecasting Competition. Sci Data 91:577CrossRefMATH
Metadaten
Titel
Short-term power forecasting of photovoltaic generation based on CFOA-CNN-BiLSTM-Attention
verfasst von
Bing Li
Haizheng Wang
Jinghua Zhang
Publikationsdatum
06.03.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-03031-9