Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.07.2018 | Original Article

Short-term prediction of glucose in type 1 diabetes using kernel adaptive filters

Zeitschrift:
Medical & Biological Engineering & Computing
Autoren:
Eleni I. Georga, José C. Príncipe, Dimitrios I. Fotiadis
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11517-018-1859-3) contains supplementary material, which is available to authorized users.

Abstract

This study aims at presenting a nonlinear, recursive, multivariate prediction model of the subcutaneous glucose concentration in type 1 diabetes. Nonlinear regression is performed in a reproducing kernel Hilbert space, by either the fixed budget quantized kernel least mean square (QKLMS-FB) or the approximate linear dependency kernel recursive least-squares (KRLS-ALD) algorithm, such that a sparse model structure is accomplished. A multivariate feature set (i.e., subcutaneous glucose, food carbohydrates, insulin regime and physical activity) is used and its influence on short-term glucose prediction is investigated. The method is evaluated using data from 15 patients with type 1 diabetes in free-living conditions. In the case when all the input variables are considered: (i) the average root mean squared error (RMSE) of QKLMS-FB increases from 13.1 mg dL−1 (mean absolute percentage error (MAPE) 6.6%) for a 15-min prediction horizon (PH) to 37.7 mg dL−1 (MAPE 20.8%) for a 60-min PH and (ii) the RMSE of KRLS-ALD, being predictably lower, increases from 10.5 mg dL−1 (MAPE 5.2%) for a 15-min PH to 31.8 mg dL−1 (MAPE 18.0%) for a 60-min PH. Multivariate data improve systematically both the regularity and the time lag of the predictions, reducing the errors in critical glucose value regions for a PH ≥ 30 min.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!

Bildnachweise