Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Ausgabe 5/2015 Open Access

Water Resources Management 5/2015

Short-Term Reservoir Optimization for Flood Mitigation under Meteorological and Hydrological Forecast Uncertainty

Application to the Três Marias Reservoir in Brazil

Zeitschrift:
Water Resources Management > Ausgabe 5/2015
Autoren:
Dirk Schwanenberg, Fernando Mainardi Fan, Steffi Naumann, Julio Issao Kuwajima, Rodolfo Alvarado Montero, Alberto Assis dos Reis

Abstract

State-of-the-art applications of short-term reservoir management integrate several advanced components, namely hydrological modelling and data assimilation techniques for predicting streamflow, optimization-based techniques for decision-making on the reservoir operation and the technical framework for integrating these components with data feeds from gauging networks, remote sensing data and meteorological weather predictions. In this paper, we present such a framework for the short-term management of reservoirs operated by the Companhia Energética de Minas Gerais S.A. (CEMIG) in the Brazilian state of Minas Gerais. Our focus is the Três Marias hydropower reservoir in the São Francisco River with a drainage area of approximately 55,000 km and its operation for flood mitigation. Basis for the anticipatory short-term management of the reservoir over a forecast horizon of up to 15 days are streamflow predictions of the MGB hydrological model. The semi-distributed model is well suited to represent the watershed and shows a Nash-Sutcliffe model performance in the order of 0.83-0.90 for most streamflow gauges of the data-sparse basin. A lead time performance assessment of the deterministic and probabilistic ECMWF forecasts as model forcing indicate the superiority of the probabilistic model. The novel short-term optimization approach consists of the reduction of the ensemble forecasts into scenario trees as an input of a multi-stage stochastic optimization. We show that this approach has several advantages over commonly used deterministic methods which neglect forecast uncertainty in the short-term decision-making. First, the probabilistic forecasts have longer forecast horizons that allow an earlier and therefore better anticipation of critical flood events. Second, the stochastic optimization leads to more robust decisions than deterministic procedures which consider only a single future trajectory. Third, the stochastic optimization permits to introduce advanced chance constraints for refining the system operation.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2015

Water Resources Management 5/2015 Zur Ausgabe