Skip to main content
Erschienen in:

17.10.2024

Short-Term Traffic Speed Prediction Based on AGC-LSTM with Multi-Source Data Integration

verfasst von: Yujia Chen, Mingxia Gao, Wanli Xiang, Junwen Mo

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The state changes of short-term traffic speeds in rapidly changing urban environments depend not only on historical data and their own patterns, but also closely relate to other variables. Although existing studies have incorporated weather factors and surrounding points of interest (POIs) into prediction models, they are still insufficient to fully capture the complexity and dynamic changes of traffic speed. In this paper, we propose a graph convolutional LSTM-based urban short-duration traffic speed prediction model (EF-AGC-LSTM) under multi-source data fusion that takes into account the road condition information on the basis of the existing weather and POI factors, embeds the GCN into the gating computation of the LSTM so as to acquire the spatio-temporal information simultaneously at each time step, and at the end introduces an attentional mechanism to identify and enhance the external key features. First, the model carefully measures things like weather, points of interest (POI), road conditions, and more. Next, it makes it possible for all of these complicated pieces of information to be combined in a useful way using a specially designed external feature set fusion component (EF-component). We then use the graph convolutional LSTM network (AGC-LSTM), which combines the attention mechanism, to extract spatio-temporal features for more accurate traffic speed prediction. Experimental comparisons with traditional models, considering only weather and POI, on real datasets show that the EF-AGC-LSTM model achieves better prediction performance with the introduction of road condition factors, and its mean absolute error (MAE), root mean square error (RMSE), and accuracy are improved. The EF-AGC-LSTM model outperforms the other comparison models in terms of MAE, RMSE, and accuracy. It indicates that EF-AGC-LSTM has excellent performance in capturing dynamic traffic speed changes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
19.
Zurück zum Zitat Liao, B., Zhang, J., Wu C., Mcllwraith, D., Chen, T., et al.: Deep sequence learning with auxiliary information for traffic prediction. In Proceedings of the 24th ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining. New York: ACM. 537–546 (2018). https://doi.org/10.48550/arXiv.1806.07380 Liao, B., Zhang, J., Wu C., Mcllwraith, D., Chen, T., et al.: Deep sequence learning with auxiliary information for traffic prediction. In Proceedings of the 24th ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining. New York: ACM. 537–546 (2018). https://​doi.​org/​10.​48550/​arXiv.​1806.​07380
21.
Zurück zum Zitat Zhu, J., Wang, Q., Tao, C., Deng, H., Zhao, L., Li, H.: AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting. IEEE Access 9, 35973–35983 (2021)CrossRef Zhu, J., Wang, Q., Tao, C., Deng, H., Zhao, L., Li, H.: AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting. IEEE Access 9, 35973–35983 (2021)CrossRef
23.
Zurück zum Zitat Cao, D., Wu, J., Zeng, Z.: Accessing the influences of weather and environment factors on traffic speed of freeway. In: Qu, X., Zhen, L., Howlett, R.J., Jain, L.C. (eds) Smart Transportation Systems 2020. Smart Innov. Syst. Technol. 185. (2020). Springer, Singapore. https://doi.org/10.1007/978-981-15-5270-0_5 Cao, D., Wu, J., Zeng, Z.: Accessing the influences of weather and environment factors on traffic speed of freeway. In: Qu, X., Zhen, L., Howlett, R.J., Jain, L.C. (eds) Smart Transportation Systems 2020. Smart Innov. Syst. Technol. 185. (2020). Springer, Singapore. https://​doi.​org/​10.​1007/​978-981-15-5270-0_​5
26.
Zurück zum Zitat Transportation Research Board.: Highway Capacity Manual, 6th ed. (Washington, D.C. (2016). Transportation Research Board.: Highway Capacity Manual, 6th ed. (Washington, D.C. (2016).
Metadaten
Titel
Short-Term Traffic Speed Prediction Based on AGC-LSTM with Multi-Source Data Integration
verfasst von
Yujia Chen
Mingxia Gao
Wanli Xiang
Junwen Mo
Publikationsdatum
17.10.2024
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2024
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00431-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.