Skip to main content

2019 | OriginalPaper | Buchkapitel

Should Anthropomorphic Systems be “Redundant”?

verfasst von : Ali Marjaninejad, Francisco J. Valero-Cuevas

Erschienen in: Biomechanics of Anthropomorphic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We explore the conceptual design and implementation of muscle redundancy and kinematic redundancy for anthropomorphic robots from three perspectives: (i) The control of tendon-driven systems, (ii) How the number of muscles define functional capabilities, and (iii) How too few synergies can be detrimental to functional versatility. Historically, roboticists prefer either rotational actuators located at each joint (i.e., rotational degree-of-freedom, DOF), or few linear actuators (i.e., two dedicated muscles per joint) for tendon-driven robots. In contrast, biological limbs have evolved to include too many muscles (Valero-Cuevas in Fundamentals of neuromechanics. Springer, Berlin (2015) [1]), which are thought to unnecessarily complicate their anatomy and control. The question, then, is why has evolution converged on these apparently under-determined (or redundant) solutions? If we really have extra muscles, then which muscle would you give up? By taking a formal mathematical approach to the control of tendons—which is the actual problem that confronts the nervous system—we have proposed a resolution to this apparent paradox by proposing that vertebrates may have, in fact, barely enough muscles to meet the numerous physical constraints for ecological functions (as opposed to simple laboratory tasks) (Valero-Cuevas in Fundamentals of neuromechanics. Springer, Berlin (2015) [1]; Loeb in Overcomplete musculature or underspecified tasks? Mot Control 4(1):81–83 (2000) [2]). This approach can be called Feasibility Theory, which describes how the anatomy of the system, and the constraints defining the task define the set of feasible actions the system can produce. The role of the (neural or engineered) controller is then, to find ways to use the mechanical capabilities of the combined controller-plant system to the fullest (Valero-Cuevas in Fundamentals of neuromechanics. Springer, Berlin (2015) [1]. Similarly, the effective mechanical design of a robotic limb, at a minimum, requires controllability (i.e., enough control degrees of freedom, or muscles) to produce arbitrary forces and movements (i.e., changes of state; Ogata in Modern control engineering. Prentice hall, India (2002) [3]). Force and movement capabilities have distinct governing equations and are, in fact, in competition with one another (e.g., a see-saw demonstrates, as per the Law of Conservation of Energy, how producing higher forces is associated with lower velocities and vice versa). Therefore, we explored the potential evolutionary pressures that may have shaped vertebrate limbs by evaluating how the number of muscles affects the competing demands to produce endpoint forces and velocities. A related concept that cuts across biological and robotic systems is the idea that the kinematics and kinetics of a wide variety of actions exhibit a low-dimensional structure that can be approximated with a few principal components (sometimes called descriptive synergies; Brock and Valero-Cuevas in Transferring synergies from neuroscience to robotics comment on hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands by M. Santello et al. Phys Life Rev 17:27 (2016) [4]; Rieffel et al. in Automated discovery and optimization of large irregular tensegrity structures. Comput Struct 87(5):368–379 (2009) [5]). This has been taken to mean that a few degrees of freedom suffice to produce versatile behavior in the real world. However, the fine behavioral details that distinguish different actions are, by definition, not captured by the commonalities among them. Thus, versatility in the real world likely depends on recognizing and executing fine distinctions among actions; which implies that more degrees of freedom of control are critical for true functional versatility. These three independent arguments support the perspective that creating anthropomorphic systems requires apparently redundant structures, because only then can they truly execute a wide variety of real-world tasks. In addition, we also present an open-access MATLAB toolbox that allows users from different backgrounds to explore these concepts in detail. We believe this new perspective will improve the conceptualization, understanding, and design of anthropomorphic systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Valero-Cuevas, F.J.: Fundamentals of Neuromechanics. Springer, Berlin (2015) Valero-Cuevas, F.J.: Fundamentals of Neuromechanics. Springer, Berlin (2015)
2.
Zurück zum Zitat Loeb, G.E.: Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)CrossRef Loeb, G.E.: Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)CrossRef
3.
Zurück zum Zitat Ogata, K., Yang, Y.: Modern Control Engineering, vol. 4. Prentice hall, India (2002) Ogata, K., Yang, Y.: Modern Control Engineering, vol. 4. Prentice hall, India (2002)
4.
Zurück zum Zitat Brock, O., Valero-Cuevas, F.: Transferring synergies from neuroscience to robotics comment on hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands by M. Santello et al. Phys. Life Rev. 17, 27 (2016)CrossRef Brock, O., Valero-Cuevas, F.: Transferring synergies from neuroscience to robotics comment on hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands by M. Santello et al. Phys. Life Rev. 17, 27 (2016)CrossRef
5.
Zurück zum Zitat Rieffel, J., Valero-Cuevas, F., Lipson, H.: Automated discovery and optimization of large irregular tensegrity structures. Comput. Struct. 87(5), 368–379 (2009)CrossRef Rieffel, J., Valero-Cuevas, F., Lipson, H.: Automated discovery and optimization of large irregular tensegrity structures. Comput. Struct. 87(5), 368–379 (2009)CrossRef
6.
Zurück zum Zitat Hagen, D.A., Valero-Cuevas, F.J.: Similar movements are associated with drastically different muscle contraction velocities. J. Biomech. 59, 90 (2017)CrossRef Hagen, D.A., Valero-Cuevas, F.J.: Similar movements are associated with drastically different muscle contraction velocities. J. Biomech. 59, 90 (2017)CrossRef
7.
Zurück zum Zitat Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)CrossRef Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)CrossRef
8.
Zurück zum Zitat Lee, Y.-T., Choi, H.-R., Chung, W.-K., Youm, Y.: Stiffness control of a coupled tendon-driven robot hand. IEEE Control Syst. 14(5), 10–19 (1994)CrossRef Lee, Y.-T., Choi, H.-R., Chung, W.-K., Youm, Y.: Stiffness control of a coupled tendon-driven robot hand. IEEE Control Syst. 14(5), 10–19 (1994)CrossRef
9.
Zurück zum Zitat Kobayashi, H., Hyodo, K., Ogane, D.: On tendon-driven robotic mechanisms with redundant tendons. Int. J. Robot. Res. 17(5), 561–571 (1998)CrossRef Kobayashi, H., Hyodo, K., Ogane, D.: On tendon-driven robotic mechanisms with redundant tendons. Int. J. Robot. Res. 17(5), 561–571 (1998)CrossRef
10.
Zurück zum Zitat Fu, J.L., Pollard, N.S. : On the importance of asymmetries in grasp quality metrics for tendon driven hands. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1068–1075. IEEE, New York (2006) Fu, J.L., Pollard, N.S. : On the importance of asymmetries in grasp quality metrics for tendon driven hands. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1068–1075. IEEE, New York (2006)
11.
Zurück zum Zitat Inouye, J.M., Kutch, J.J., Valero-Cuevas, F.J.: A novel synthesis of computational approaches enables optimization of grasp quality of tendon-driven hands. IEEE Trans. Rob. 28(4), 958–966 (2012)CrossRef Inouye, J.M., Kutch, J.J., Valero-Cuevas, F.J.: A novel synthesis of computational approaches enables optimization of grasp quality of tendon-driven hands. IEEE Trans. Rob. 28(4), 958–966 (2012)CrossRef
12.
Zurück zum Zitat Inouye, J.M., Valero-Cuevas, F.J.: Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. 33(5), 694–705 (2014)CrossRef Inouye, J.M., Valero-Cuevas, F.J.: Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. 33(5), 694–705 (2014)CrossRef
13.
Zurück zum Zitat Mardula, K.L., Balasubramanian, R., Allan, C.H.: Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study. Hand 10(1), 116–122 (2015)CrossRef Mardula, K.L., Balasubramanian, R., Allan, C.H.: Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study. Hand 10(1), 116–122 (2015)CrossRef
14.
Zurück zum Zitat Valero-Cuevas, F.J., Cohn, B., Yngvason, H., Lawrence, E.L.: Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J. Biomech. 48(11), 2887–2896 (2015)CrossRef Valero-Cuevas, F.J., Cohn, B., Yngvason, H., Lawrence, E.L.: Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J. Biomech. 48(11), 2887–2896 (2015)CrossRef
15.
Zurück zum Zitat Proske, U., Morgan, D.: Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 537(2), 333–345 (2001)CrossRef Proske, U., Morgan, D.: Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 537(2), 333–345 (2001)CrossRef
16.
Zurück zum Zitat Inouye, J.M., Valero-Cuevas, F.J.: Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput. Biol. 12(2), e1004737 (2016)CrossRef Inouye, J.M., Valero-Cuevas, F.J.: Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput. Biol. 12(2), e1004737 (2016)CrossRef
17.
Zurück zum Zitat Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (1981)CrossRef Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (1981)CrossRef
18.
Zurück zum Zitat Chao, E., An, K.-N.: Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Eng. 100(3), 159–167 (1978)CrossRef Chao, E., An, K.-N.: Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Eng. 100(3), 159–167 (1978)CrossRef
19.
Zurück zum Zitat Yoshikawa, T.: Foundations of Robotics: Analysis and Control. MIT press, Cambridge, MA (1990) Yoshikawa, T.: Foundations of Robotics: Analysis and Control. MIT press, Cambridge, MA (1990)
20.
Zurück zum Zitat Leijnse, J.: A generic morphological model of the anatomic variability in the m. flexor digitorum profundus, m. flexor pollicis longus and mm. lumbricales complex. Cells Tissues Organs 160(1), 62–74 (1997)CrossRef Leijnse, J.: A generic morphological model of the anatomic variability in the m. flexor digitorum profundus, m. flexor pollicis longus and mm. lumbricales complex. Cells Tissues Organs 160(1), 62–74 (1997)CrossRef
21.
Zurück zum Zitat Zajac, F.E.: Muscle and tendon properties models scaling and application to biomechanics and motor. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989) Zajac, F.E.: Muscle and tendon properties models scaling and application to biomechanics and motor. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)
22.
Zurück zum Zitat Chvatal, V.: Linear Programming. Macmillan, New York (1983)MATH Chvatal, V.: Linear Programming. Macmillan, New York (1983)MATH
23.
Zurück zum Zitat Prilutsky, B.I.: Muscle coordination: the discussion continues. Mot. Control 4(1), 97–116 (2000)CrossRef Prilutsky, B.I.: Muscle coordination: the discussion continues. Mot. Control 4(1), 97–116 (2000)CrossRef
24.
Zurück zum Zitat Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)CrossRef Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)CrossRef
25.
Zurück zum Zitat Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)CrossRef Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)CrossRef
26.
Zurück zum Zitat Napier, J.R.: The prehensile movements of the human hand. Bone Joint J. 38(4), 902–913 (1956) Napier, J.R.: The prehensile movements of the human hand. Bone Joint J. 38(4), 902–913 (1956)
27.
Zurück zum Zitat Johansson, R.S., Cole, K.J.: Sensory-motor coordination during grasping and manipulative actions. Curr. Opin. Neurobiol. 2(6), 815–823 (1992)CrossRef Johansson, R.S., Cole, K.J.: Sensory-motor coordination during grasping and manipulative actions. Curr. Opin. Neurobiol. 2(6), 815–823 (1992)CrossRef
28.
Zurück zum Zitat Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE, New York (2012) Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE, New York (2012)
29.
Zurück zum Zitat Sherrington, C.S.: Reflex inhibition as a factor in the co-ordination of movements and postures. Exp. Physiol. 6(3), 251–310 (1913)CrossRef Sherrington, C.S.: Reflex inhibition as a factor in the co-ordination of movements and postures. Exp. Physiol. 6(3), 251–310 (1913)CrossRef
31.
Zurück zum Zitat Laine, C.M., Nagamori, A., Valero-Cuevas, F.J.: The dynamics of voluntary force production in afferented muscle influence involuntary tremor. Front. Comput. Neurosci. 10, 86 (2016)CrossRef Laine, C.M., Nagamori, A., Valero-Cuevas, F.J.: The dynamics of voluntary force production in afferented muscle influence involuntary tremor. Front. Comput. Neurosci. 10, 86 (2016)CrossRef
32.
Zurück zum Zitat Jalaleddini, K., Nagamori, A., Laine, C.M., Golkar, M.A., Kearney, R.E., Valero-Cuevas, F.J.: Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control. J. Physiol. 595, 7331 (2017)CrossRef Jalaleddini, K., Nagamori, A., Laine, C.M., Golkar, M.A., Kearney, R.E., Valero-Cuevas, F.J.: Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control. J. Physiol. 595, 7331 (2017)CrossRef
33.
Zurück zum Zitat Nagamori, A., Laine, C.M., Valero-Cuevas, F.J.: Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles. PLoS Comp Biol (2017, in press) Nagamori, A., Laine, C.M., Valero-Cuevas, F.J.: Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles. PLoS Comp Biol (2017, in press)
34.
Zurück zum Zitat Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M., et al.: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 17, 1–23 (2016)CrossRef Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M., et al.: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 17, 1–23 (2016)CrossRef
35.
Zurück zum Zitat Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17(6), 622–628 (2007)CrossRef Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17(6), 622–628 (2007)CrossRef
36.
Zurück zum Zitat Valero-Cuevas, F.J., Santello, M.: On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J. Neuroeng. Rehabil. 14(1), 101 (2017)CrossRef Valero-Cuevas, F.J., Santello, M.: On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J. Neuroeng. Rehabil. 14(1), 101 (2017)CrossRef
37.
Zurück zum Zitat Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Human-Mach. Syst. 46(1), 66–77 (2016)CrossRef Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Human-Mach. Syst. 46(1), 66–77 (2016)CrossRef
38.
Zurück zum Zitat Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016)CrossRef Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016)CrossRef
39.
Zurück zum Zitat Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33(5), 768–782 (2014)CrossRef Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33(5), 768–782 (2014)CrossRef
Metadaten
Titel
Should Anthropomorphic Systems be “Redundant”?
verfasst von
Ali Marjaninejad
Francisco J. Valero-Cuevas
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-93870-7_2

Neuer Inhalt