Skip to main content

2015 | Buch

SialoGlyco Chemistry and Biology II

Tools and Techniques to Identify and Capture Sialoglycans

herausgegeben von: Rita Gerardy-Schahn, Philippe Delannoy, Mark von Itzstein

Verlag: Springer International Publishing

Buchreihe : Topics in Current Chemistry

insite
SUCHEN

Über dieses Buch

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.

Inhaltsverzeichnis

Frontmatter
Sialic Acid Receptors of Viruses
Abstract
Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Mikhail Matrosovich, Georg Herrler, Hans Dieter Klenk
Endosialidases: Versatile Tools for the Study of Polysialic Acid
Abstract
Polysialic acid is an α2,8-linked N-acetylneuraminic acid polymer found on the surface of both bacterial and eukaryotic cells. Endosialidases are bacteriophage-borne glycosyl hydrolases that specifically cleave polysialic acid. The crystal structure of an endosialidase reveals a trimeric mushroom-shaped molecule which, in addition to the active site, harbors two additional polysialic acid binding sites. Folding of the protein crucially depends on an intramolecular C-terminal chaperone domain that is proteolytically released in an intramolecular reaction. Based on structural data and previous considerations, an updated catalytic mechanism is discussed. Endosialidases degrade polysialic acid in a processive mode of action, and a model for its mechanism is suggested. The review summarizes the structural and biochemical elucidations of the last decade and the importance of endosialidases in biochemical and medical applications. Active endosialidases are important tools in studies on the biological roles of polysialic acid, such as the pathogenesis of septicemia and meningitis by polysialic acid-encapsulated bacteria, or its role as a modulator of the adhesion and interactions of neural and other cells. Endosialidase mutants that have lost their polysialic acid cleaving activity while retaining their polysialic acid binding capability have been fused to green fluorescent protein to provide an efficient tool for the specific detection of polysialic acid.
Elina Jakobsson, David Schwarzer, Anne Jokilammi, Jukka Finne
Advanced Technologies in Sialic Acid and Sialoglycoconjugate Analysis
Abstract
Although the structural diversity of sialic acid (Sia) is rapidly expanding, understanding of its biological significance has lagged behind. Advanced technologies to detect and probe diverse structures of Sia are absolutely necessary not only to understand further biological significance but also to pursue medicinal and industrial applications. Here we describe analytical methods for detection of Sia that have recently been developed or improved, with a special focus on 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac), N-glycolylneuraminic acid (Neu5Gc), deaminoneuraminic acid (Kdn), O-sulfated Sia (SiaS), and di-, oligo-, and polysialic acid (diSia/oligoSia/polySia) in glycoproteins and glycolipids. Much more attention has been paid to these Sia and sialoglycoconjugates during the last decade, in terms of regulation of the immune system, neural development and function, tumorigenesis, and aging.
Ken Kitajima, Nissi Varki, Chihiro Sato
Development and Applications of the Lectin Microarray
Abstract
The lectin microarray is an emerging technology for glycomics. It has already found maximum use in diverse fields of glycobiology by providing simple procedures for differential glycan profiling in a rapid and high-throughput manner. Since its first appearance in the literature in 2005, many application methods have been developed essentially on the same platform, comprising a series of glycan-binding proteins immobilized on an appropriate substrate such as a glass slide. Because the lectin microarray strategy does not require prior liberation of glycans from the core protein in glycoprotein analysis, it should encourage researchers not familiar with glycotechnology to use glycan analysis in future work. This feasibility should provide a broader range of experimental scientists with good opportunities to investigate novel aspects of glycoscience. Applications of the technology include not only basic sciences but also the growing fields of bio-industry. This chapter describes first the essence of glycan profiling and the basic fabrication of the lectin microarray for this purpose. In the latter part the focus is on diverse applications to both structural and functional glycomics, with emphasis on the wide applicability now available with this new technology. Finally, the importance of developing advanced lectin engineering is discussed.
Jun Hirabayashi, Atsushi Kuno, Hiroaki Tateno
Sialoside Arrays: New Synthetic Strategies and Applications
Abstract
Sialic acid-containing carbohydrates, or sialosides, play critical roles in many biological events and in diseases, including viral and bacterial infections, the immune response, the progression of tumor cell metastasis, etc. Despite the importance, the limited access to complex sialosides had prevented extensive studies on the function and significance of sialic acid structural diversity. However, recent advances in synthetic sialoside chemistry, such as the novel chemoenzymatic or stereochemical approach, have produced homogeneous size- and structure-defined sialosides to create diverse sialosides for array application. The advantage of sialoside arrays is the multivalent display of arrayed sialosides which can serve to mimic cell surface display; thus, an array-based technique is well suited for investigations of the real sialoside-mediated interactions in nature. In brief, this chapter discusses the novel strategies for synthesizing sialosides with selected examples of applications to illustrate the potential of sialoside arrays and further forecast to the trend of using nanotechnology in sialoside arrays.
Chi-Hui Liang, Che-Hsiung Hsu, Chung-Yi Wu
SIGLEC-4 (MAG) Antagonists: From the Natural Carbohydrate Epitope to Glycomimetics
Abstract
Siglec-4, also known as myelin-associated glycoprotein (MAG), is a member of the siglec (sialic acid-binding immunoglobulin-like lectins) family. MAG binds with high preference to sialic acids α(2–3)-linked to D-galactose. Although the involvement and relevance of its sialic acid binding activity is still controversial, it could be demonstrated that interactions of MAG with sialylated gangliosides play an important role in axon stability and regeneration. In this article we describe in detail our current understanding of the biological role and the carbohydrate specificity of siglec-4. Furthermore, this review compiles the intensive research efforts leading from the identification of the minimal oligosaccharide binding epitope in gangliosides via micromolar oligosaccharide mimics to the development of small molecular weight and more drug-like sialic acid derivatives binding with low nanomolar affinities. Such compounds will be useful to elucidate MAG’s biological functions, which are currently not fully understood.
Oliver Schwardt, Soerge Kelm, Beat Ernst
Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans
Abstract
PET and noninvasive fluorescence imaging of the sialo-N-linked glycan derivatives are described. To establish the efficient labeling protocol for N-glycans and/or glycoconjugates, new labeling probes of fluorescence and 68Ga-DOTA, as the positron emission nucleus for PET, through rapid 6π-azaelectrocyclization were designed and synthesized, (E)-ester aldehydes. The high reactivity of these probes enabled the labeling of lysine residues in peptides, proteins, and even amino groups on the cell surfaces at very low concentrations of the target molecules (~10−8 M) within a short reaction time (~5 min) to result in “selective” and “non-destructive” labeling of the more accessible amines. The first MicroPET of glycoproteins, 68Ga-DOTA-orosomucoid and asialoorosomucoid, successfully visualized the differences in the circulatory residence of glycoproteins, in the presence or absence of sialic acids. In vivo dynamics of the new N-glycoclusters, prepared by the “self-activating” Huisgen cycloaddition reaction, could also be affected significantly by their partial structures at the non-reducing end, i.e., the presence or absence of sialic acids, and/or sialoside linkages to galactose. Azaelectrocyclization chemistry is also applicable to the engineering of the proteins and/or the cell surfaces by the oligosaccharides; lymphocytes chemically engineered by sialo-N-glycan successfully target the tumor implanted in BALB/C nude mice, detected by noninvasive fluorescence imaging.
Katsunori Tanaka, Koichi Fukase
Trypanosomal Trans-sialidases: Valuable Synthetic Tools and Targets for Medicinal Chemistry
Abstract
In contrast to the general hydrolases, trans-sialidase from Trypanosoma cruzi (TcTS) shows excellent regio- and stereoselectivity as well as high yields in transfer reactions. Discussed are the occurrence of trans-sialidases and studies on the transfer mechanism. In detail, the preparative use by chemoenzymatic syntheses with TcTS are outlined with emphasis on the design of modified donor and acceptor substrates. Another section focuses on attempts to develop inhibitors for TcTS, and these endeavors are based on donor- and acceptor-inspired modifications as well as on some completely different structures.
Sebastian Meinke, Joachim Thiem
Backmatter
Metadaten
Titel
SialoGlyco Chemistry and Biology II
herausgegeben von
Rita Gerardy-Schahn
Philippe Delannoy
Mark von Itzstein
Copyright-Jahr
2015
Electronic ISBN
978-3-319-21317-0
Print ISBN
978-3-319-21316-3
DOI
https://doi.org/10.1007/978-3-319-21317-0