Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2011

01.06.2011

Signal propagation in feedforward neuronal networks with unreliable synapses

verfasst von: Daqing Guo, Chunguang Li

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
An anonymous reviewer kindly reminded us that there might be a relevant abstract (Trommershäuser and Diesmann 2001) discussing the effect of synaptic variability on the synchronization dynamics in feedforward cortical neural networks, but the abstract itself does not contain the results presumably presented on the poster and also the follow-up publications do not exist.
 
Literatur
Zurück zum Zitat Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. New York: Cambridge Uinversity Press.CrossRef Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. New York: Cambridge Uinversity Press.CrossRef
Zurück zum Zitat Aertsen, A., Diesmann, M., & Gewaltig, M. O. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology-Paris, 90, 243–247.CrossRef Aertsen, A., Diesmann, M., & Gewaltig, M. O. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology-Paris, 90, 243–247.CrossRef
Zurück zum Zitat Allen, C., & Stevens, C. F. (1994). An evaluation of causes for unreliability of synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 91, 10380–10383.PubMedCrossRef Allen, C., & Stevens, C. F. (1994). An evaluation of causes for unreliability of synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 91, 10380–10383.PubMedCrossRef
Zurück zum Zitat Aviel, Y., Mehring, C., Abeles, M., & Horn, D. (2003). On embedding synfire chains in a balanced network. Neural Computation, 15, 1321–1340.PubMedCrossRef Aviel, Y., Mehring, C., Abeles, M., & Horn, D. (2003). On embedding synfire chains in a balanced network. Neural Computation, 15, 1321–1340.PubMedCrossRef
Zurück zum Zitat Boven, K. H., & Aertsen, A. M. H. J. (1990). Dynamics of activity in neuronal networks give rise to fast modulations of functional connectivity. In Parallel processing and neural systems and computers (pp. 53–56). Amsterdam: Elsevier. Boven, K. H., & Aertsen, A. M. H. J. (1990). Dynamics of activity in neuronal networks give rise to fast modulations of functional connectivity. In Parallel processing and neural systems and computers (pp. 53–56). Amsterdam: Elsevier.
Zurück zum Zitat Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability and feedback control at single synapses. Nature Reviews Neuroscience, 10, 373–383.PubMedCrossRef Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability and feedback control at single synapses. Nature Reviews Neuroscience, 10, 373–383.PubMedCrossRef
Zurück zum Zitat Câteau, H., & Fukai, T. (2001). Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Networks, 14, 675–685.PubMedCrossRef Câteau, H., & Fukai, T. (2001). Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Networks, 14, 675–685.PubMedCrossRef
Zurück zum Zitat Chialvo, D. R., Longtin, A., & Muller-Gerking, J. (1997). Stochastic resonance in models of neuronal ensembles. Physical review E, 55, 1798–1808.CrossRef Chialvo, D. R., Longtin, A., & Muller-Gerking, J. (1997). Stochastic resonance in models of neuronal ensembles. Physical review E, 55, 1798–1808.CrossRef
Zurück zum Zitat Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995a). Stochastic resonance without tuning. Nature, 376, 236–238.PubMedCrossRef Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995a). Stochastic resonance without tuning. Nature, 376, 236–238.PubMedCrossRef
Zurück zum Zitat Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995b). Aperiodic stochastic resonance in excitable systems. Physical Review E, 52, R3321–R3324.CrossRef Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995b). Aperiodic stochastic resonance in excitable systems. Physical Review E, 52, R3321–R3324.CrossRef
Zurück zum Zitat Collins, J. J., Chow, C. C., Capela, A. C., & Imhoff, T. T. (1996). Aperiodic stochastic resonance. Physical Review E, 54, 5575–5584.CrossRef Collins, J. J., Chow, C. C., Capela, A. C., & Imhoff, T. T. (1996). Aperiodic stochastic resonance. Physical Review E, 54, 5575–5584.CrossRef
Zurück zum Zitat Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computaional and mathematical modeling of neural systems. Cambridge: MIT Press. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computaional and mathematical modeling of neural systems. Cambridge: MIT Press.
Zurück zum Zitat Diesmann, M., Gewaltig, M. O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.PubMedCrossRef Diesmann, M., Gewaltig, M. O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.PubMedCrossRef
Zurück zum Zitat Diesmann, M., Gewaltig, M. O., Rotter, S., & Aertsen, A. (2001). State space analysis of synchronous spiking in cortical neural networks. Neurocomputing, 38–40, 565–571.CrossRef Diesmann, M., Gewaltig, M. O., Rotter, S., & Aertsen, A. (2001). State space analysis of synchronous spiking in cortical neural networks. Neurocomputing, 38–40, 565–571.CrossRef
Zurück zum Zitat Diesmann, M. (2002). Conditions for stable propagation of synchronous spiking in cortical neural networks: Single neuron dynamics and network properties. Ph.D. thesis, University of Bochum. Diesmann, M. (2002). Conditions for stable propagation of synchronous spiking in cortical neural networks: Single neuron dynamics and network properties. Ph.D. thesis, University of Bochum.
Zurück zum Zitat Friedrich, J., & Kinzel, W. (2009). Dynamics of recurrent neural networks with delayed unreliable synapses: Metastable clustering. Journal of Computational Neuroscience, 27, 65–80.PubMedCrossRef Friedrich, J., & Kinzel, W. (2009). Dynamics of recurrent neural networks with delayed unreliable synapses: Metastable clustering. Journal of Computational Neuroscience, 27, 65–80.PubMedCrossRef
Zurück zum Zitat Gewaltig, M. O., Diesmann, M., & Aertsen, A. (2001). Propagation of cortical synfire activity: Survival probability in single trials and stability in the mean. Neural Networks, 14, 657–673.PubMedCrossRef Gewaltig, M. O., Diesmann, M., & Aertsen, A. (2001). Propagation of cortical synfire activity: Survival probability in single trials and stability in the mean. Neural Networks, 14, 657–673.PubMedCrossRef
Zurück zum Zitat Goldman, M. S., Maldonado, P., & Abbott, L. F. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. Journal of Computational Neuroscience, 22, 584–591. Goldman, M. S., Maldonado, P., & Abbott, L. F. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. Journal of Computational Neuroscience, 22, 584–591.
Zurück zum Zitat Goldman, M. S. (2004). Enhancement of information transmission efficiency by synaptic failures. Neural Computation, 16, 1137–1162.PubMedCrossRef Goldman, M. S. (2004). Enhancement of information transmission efficiency by synaptic failures. Neural Computation, 16, 1137–1162.PubMedCrossRef
Zurück zum Zitat Guo, D. Q., & Li, C. G. (2009). Stochastic and coherence resonance in feed-forward-loop neuronal network motifs. Physical Review E, 79, 051921.CrossRef Guo, D. Q., & Li, C. G. (2009). Stochastic and coherence resonance in feed-forward-loop neuronal network motifs. Physical Review E, 79, 051921.CrossRef
Zurück zum Zitat Hamaguchi, K., & Aihara, K. (2005). Quantitative information transfer through layers of spiking neurons connected by Mexican-hat-type connectivity. Neurocomputing, 58–60, 85–90. Hamaguchi, K., & Aihara, K. (2005). Quantitative information transfer through layers of spiking neurons connected by Mexican-hat-type connectivity. Neurocomputing, 58–60, 85–90.
Zurück zum Zitat Hamaguchi, K., Okada, M., Yamana, M., & Aihara, K. (2005). Correlated firing in a feedforward network with mexican-hat-type connectivity. Neural Compuation, 17, 2034–2059.CrossRef Hamaguchi, K., Okada, M., Yamana, M., & Aihara, K. (2005). Correlated firing in a feedforward network with mexican-hat-type connectivity. Neural Compuation, 17, 2034–2059.CrossRef
Zurück zum Zitat Hehl, U., Hellwig, B., Rotter, S., Diesmann, M., Aertsen, A. (2001). Localization of synchronous spiking as a result of anatomical connectivity. Soc. Neurosci. Abstr., 64, 1. Hehl, U., Hellwig, B., Rotter, S., Diesmann, M., Aertsen, A. (2001). Localization of synchronous spiking as a result of anatomical connectivity. Soc. Neurosci. Abstr., 64, 1.
Zurück zum Zitat Katz, B. (1966). Nerve, muscle and synapse. New York: McGraw-Hill. Katz, B. (1966). Nerve, muscle and synapse. New York: McGraw-Hill.
Zurück zum Zitat Katz, B. (1969). The release of neural transmitter substances. Liverpool: Liverpol University Press. Katz, B. (1969). The release of neural transmitter substances. Liverpool: Liverpol University Press.
Zurück zum Zitat Kloeden, P. E., Platen, E., & Schurz, H. (1994). Numerical solution of sde through computer experiments. Berlin: Springer-Verlag Press. Kloeden, P. E., Platen, E., & Schurz, H. (1994). Numerical solution of sde through computer experiments. Berlin: Springer-Verlag Press.
Zurück zum Zitat Kumar, A., Rotter, S., & Aertsen, A. (2008). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28, 5268–5280.PubMedCrossRef Kumar, A., Rotter, S., & Aertsen, A. (2008). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28, 5268–5280.PubMedCrossRef
Zurück zum Zitat Kumar, A., Rotter, S., & Aertsen, A. (2010). Spiking activity propagation in neuronal networks: Reconciling different perspectives on neural coding. Nature Reviews, Neuroscience, 11, 615–627.CrossRef Kumar, A., Rotter, S., & Aertsen, A. (2010). Spiking activity propagation in neuronal networks: Reconciling different perspectives on neural coding. Nature Reviews, Neuroscience, 11, 615–627.CrossRef
Zurück zum Zitat Li, C., Chen, L., & Aihara, K. (2006). Transient resetting: A novel mechanism for synchrony and its biological examples. PLoS Computational Biology, 2, e103.CrossRef Li, C., Chen, L., & Aihara, K. (2006). Transient resetting: A novel mechanism for synchrony and its biological examples. PLoS Computational Biology, 2, e103.CrossRef
Zurück zum Zitat Lindner, B., & Schimansky-Geier, L. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Physical Review E, 66, 031916.CrossRef Lindner, B., & Schimansky-Geier, L. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Physical Review E, 66, 031916.CrossRef
Zurück zum Zitat Maass, W., & Natschläger, T. (2000). A model for fast analog computation based on unreliable synapses. Neural Computation, 12, 1679–1704.PubMedCrossRef Maass, W., & Natschläger, T. (2000). A model for fast analog computation based on unreliable synapses. Neural Computation, 12, 1679–1704.PubMedCrossRef
Zurück zum Zitat Masuda, N., & Aihara, K. (2002). Bridging rate coding and temporal spike coding by effect of noise. Physical Review Letters, 88, 248101.PubMedCrossRef Masuda, N., & Aihara, K. (2002). Bridging rate coding and temporal spike coding by effect of noise. Physical Review Letters, 88, 248101.PubMedCrossRef
Zurück zum Zitat Masuda, N., & Aihara, K. (2003). Duality of rate coding and temporal coding in multilayered feedforward networks. Neural Computation, 15, 103–125.PubMedCrossRef Masuda, N., & Aihara, K. (2003). Duality of rate coding and temporal coding in multilayered feedforward networks. Neural Computation, 15, 103–125.PubMedCrossRef
Zurück zum Zitat Nordlie, E., Gewaltig, M. O., & Plesser, H. E. (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5, e1000456.CrossRef Nordlie, E., Gewaltig, M. O., & Plesser, H. E. (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5, e1000456.CrossRef
Zurück zum Zitat Pikovsky, A. S., & Kurths, J. (1996). Coherence resonance in a noise-driven excitable system. Physical Review Letters, 78, 775–778.CrossRef Pikovsky, A. S., & Kurths, J. (1996). Coherence resonance in a noise-driven excitable system. Physical Review Letters, 78, 775–778.CrossRef
Zurück zum Zitat Postma, E. O., van den Herik, H. J., & Hudson, P. T. W. (1996). Robust feedforward processing in synfire chains. International Journal of Neural Systems, 7, 537–542.PubMedCrossRef Postma, E. O., van den Herik, H. J., & Hudson, P. T. W. (1996). Robust feedforward processing in synfire chains. International Journal of Neural Systems, 7, 537–542.PubMedCrossRef
Zurück zum Zitat Raastad, M., Storm, J. F., & Andersen, P. (1992). Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. European Journal of Neuroscience, 4, 113–117.PubMedCrossRef Raastad, M., Storm, J. F., & Andersen, P. (1992). Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. European Journal of Neuroscience, 4, 113–117.PubMedCrossRef
Zurück zum Zitat Rosenmund, C., Clements, J. D., & Westbrook, G. L. (1993). Nonuniform probability of glutamate release at a hippocampal synapse. Science, 262, 754–757.PubMedCrossRef Rosenmund, C., Clements, J. D., & Westbrook, G. L. (1993). Nonuniform probability of glutamate release at a hippocampal synapse. Science, 262, 754–757.PubMedCrossRef
Zurück zum Zitat Shinozaki, T., Câteau, H., Urakubo, H., & Okada, M. (2007). Controlling synfire chain by inhibitory synaptic input. Journal of the Physical Society of Japan, 76, 044806.CrossRef Shinozaki, T., Câteau, H., Urakubo, H., & Okada, M. (2007). Controlling synfire chain by inhibitory synaptic input. Journal of the Physical Society of Japan, 76, 044806.CrossRef
Zurück zum Zitat Shinozaki, T., Okada, M., Reyes, A. D., & Câteau, H. (2010). Flexible traffic control of the synfire-mode transmission by inhibitory modulation: Nonlinear noise reduction. Physical Review E, 81, 011913.CrossRef Shinozaki, T., Okada, M., Reyes, A. D., & Câteau, H. (2010). Flexible traffic control of the synfire-mode transmission by inhibitory modulation: Nonlinear noise reduction. Physical Review E, 81, 011913.CrossRef
Zurück zum Zitat Smetters, D. K., & Zador, A. (1996). Synaptic transmission: Noisy synapses and noisy neurons. Current Biology, 6, 1217–1218.PubMedCrossRef Smetters, D. K., & Zador, A. (1996). Synaptic transmission: Noisy synapses and noisy neurons. Current Biology, 6, 1217–1218.PubMedCrossRef
Zurück zum Zitat Stevens, C. F., & Wang, Y. (1995). Facilitation and depression at single central synapses. Neuron, 14, 795–802.PubMedCrossRef Stevens, C. F., & Wang, Y. (1995). Facilitation and depression at single central synapses. Neuron, 14, 795–802.PubMedCrossRef
Zurück zum Zitat Tetzlaff, T., Buschermoehle, M., Geisel, T., & Diesmann, M. (2003). The spread of rate and correlation in stationary cortical networks. Neurocomputing, 52–54, 949–954.CrossRef Tetzlaff, T., Buschermoehle, M., Geisel, T., & Diesmann, M. (2003). The spread of rate and correlation in stationary cortical networks. Neurocomputing, 52–54, 949–954.CrossRef
Zurück zum Zitat Tetzlaff, T., Geisel, T., & Diesmann, M. (2002). The ground state of cortical feed-forward networks. Neurocomputing, 44–46, 673–678.CrossRef Tetzlaff, T., Geisel, T., & Diesmann, M. (2002). The ground state of cortical feed-forward networks. Neurocomputing, 44–46, 673–678.CrossRef
Zurück zum Zitat Trommershäuser, J., & Diesmann, M. (2001). The effect of synaptic variability on the synchronization dynamics in feed-forward cortical networks. Soc. Neurosci. Abstr., 64, 4. Trommershäuser, J., & Diesmann, M. (2001). The effect of synaptic variability on the synchronization dynamics in feed-forward cortical networks. Soc. Neurosci. Abstr., 64, 4.
Zurück zum Zitat Trommershäuser, J., Marienhagen, J., & Zippelius, A. (1999). Stochastic model of central synapses: Slow diffusion of transmitter interacting with spatially distributed receptors and transporters. Journal of Theoretical Biology, 198, 101–120.PubMedCrossRef Trommershäuser, J., Marienhagen, J., & Zippelius, A. (1999). Stochastic model of central synapses: Slow diffusion of transmitter interacting with spatially distributed receptors and transporters. Journal of Theoretical Biology, 198, 101–120.PubMedCrossRef
Zurück zum Zitat van Rossum, M. C. W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22, 1956–1966.PubMed van Rossum, M. C. W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22, 1956–1966.PubMed
Zurück zum Zitat Vogels, P. T., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.PubMedCrossRef Vogels, P. T., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.PubMedCrossRef
Zurück zum Zitat Wang, S. T., Wang, W., & Liu, F. (2006). Propagation of firing rate in a feed-forward neuronal network. Physical Review Letters, 96, 018103.PubMedCrossRef Wang, S. T., Wang, W., & Liu, F. (2006). Propagation of firing rate in a feed-forward neuronal network. Physical Review Letters, 96, 018103.PubMedCrossRef
Zurück zum Zitat Wang, S. T., & Zhou, C. S. (2009). Information encoding in an oscillatory network. Physical Review E, 79, 061910.CrossRef Wang, S. T., & Zhou, C. S. (2009). Information encoding in an oscillatory network. Physical Review E, 79, 061910.CrossRef
Metadaten
Titel
Signal propagation in feedforward neuronal networks with unreliable synapses
verfasst von
Daqing Guo
Chunguang Li
Publikationsdatum
01.06.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0279-7

Weitere Artikel der Ausgabe 3/2011

Journal of Computational Neuroscience 3/2011 Zur Ausgabe