Skip to main content
Erschienen in: Journal of Materials Science 11/2018

05.03.2018 | Energy materials

Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2–Au nanocomposite in TiO2 photoanode

verfasst von: Swati Bhardwaj, Arnab Pal, Kuntal Chatterjee, Tushar H. Rana, Gourav Bhattacharya, Susanta Sinha Roy, Papia Chowdhury, Ganesh D. Sharma, Subhayan Biswas

Erschienen in: Journal of Materials Science | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this report, the effect of incorporation of hydrothermally prepared TiO2–Au nanocomposites in the photoanode of dye-sensitized solar cells (DSSCs), prepared from commercially available TiO2 nanoparticles, has been investigated. Electrophoretic deposition technique has been utilized for nanocomposite-doped photoanode preparation. The formation of hydrothermally prepared TiO2–Au nanocomposites has been confirmed by the X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV–Vis spectroscopy. The HRTEM images establish that the particle size of Au nanoparticles dispersed in TiO2 matrix varies from 2 to 45 nm. TiO2–Au photoelectrode has been characterized by XRD, field emission scanning electron microscopy, Raman spectroscopy and photoluminescence spectroscopy in order to confirm the successful preparation of plasmonic photoanodes. Measurement of current–voltage characteristics of the plasmonic dye-sensitized solar cells under the solar simulator illumination (100 mW/cm2, AM 1.5) shows enormous enhancement of power conversion efficiency. The PCE of plasmonic DSSCs is 10.1%, which is 134% greater than the DSSCs with pristine TiO2 photoanode of the same thickness. Electro-impedance spectroscopy reveals that the back electron transfer from the conduction band of Au–TiO2 photoanode to either dye or electrolyte has been significantly suppressed in the DSSC with plasmonic photoelectrode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fan K, Yu J, Ho W (2017) Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Mater Horiz 4:319–344CrossRef Fan K, Yu J, Ho W (2017) Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Mater Horiz 4:319–344CrossRef
2.
Zurück zum Zitat Song TB, Chen Q, Zhou H, Jiang C, Wang H-H, Yang Y, Liu Y, You J, Yang Y (2015) Perovskite solar cells: film formation and properties. J Mater Chem A 3:9032–9050CrossRef Song TB, Chen Q, Zhou H, Jiang C, Wang H-H, Yang Y, Liu Y, You J, Yang Y (2015) Perovskite solar cells: film formation and properties. J Mater Chem A 3:9032–9050CrossRef
3.
Zurück zum Zitat O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRef O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRef
4.
Zurück zum Zitat Gratzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164:3–14CrossRef Gratzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164:3–14CrossRef
5.
Zurück zum Zitat Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)—based redox electrolyte exceed 12 percent efficiency. Science 334:629–634CrossRef Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)—based redox electrolyte exceed 12 percent efficiency. Science 334:629–634CrossRef
6.
Zurück zum Zitat Zhou N, Lopez-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I, Xu QH (2015) Plasmon-enhanced light harvesting: application in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv 5:29076–29097CrossRef Zhou N, Lopez-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I, Xu QH (2015) Plasmon-enhanced light harvesting: application in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv 5:29076–29097CrossRef
7.
Zurück zum Zitat Gangadharana DT, Xua Z, Liu Y, Izquierdo R, Ma D (2017) Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6:153–175 Gangadharana DT, Xua Z, Liu Y, Izquierdo R, Ma D (2017) Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6:153–175
8.
Zurück zum Zitat Erwin WR, Zarick HF, Taibert EM, Bardhan R (2016) Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ Sci 9:1577–1601CrossRef Erwin WR, Zarick HF, Taibert EM, Bardhan R (2016) Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ Sci 9:1577–1601CrossRef
9.
Zurück zum Zitat Pandikumar A, Lim S-P, Jayabal S, Huang NM, Lim HN, Ramaraj R (2016) Titania–goldplasmonic nanostructures: an ideal photoanode for dye-sensitized solar cells. Renew Sustain Energy Rev 60:408–420CrossRef Pandikumar A, Lim S-P, Jayabal S, Huang NM, Lim HN, Ramaraj R (2016) Titania–goldplasmonic nanostructures: an ideal photoanode for dye-sensitized solar cells. Renew Sustain Energy Rev 60:408–420CrossRef
10.
Zurück zum Zitat Hwang H-J, Joo S-J, Patil SA, Kim H-S (2017) Efficiency enhancement in dye-sensitized solar cells using the shape/size-dependent plasmonic nanocomposite photoanodes incorporating silver nanoplates. Nanoscale 9(23):7960–7969CrossRef Hwang H-J, Joo S-J, Patil SA, Kim H-S (2017) Efficiency enhancement in dye-sensitized solar cells using the shape/size-dependent plasmonic nanocomposite photoanodes incorporating silver nanoplates. Nanoscale 9(23):7960–7969CrossRef
12.
Zurück zum Zitat Mahajan A, Bedi RK, Kumar S, Saxena V, Singh A, Aswal DK (2016) Broadband enhancement in absorption cross-section of N719 dye using different anisotropic shaped single crystalline silver nanoparticle. RSC Adv 6:48064–48071CrossRef Mahajan A, Bedi RK, Kumar S, Saxena V, Singh A, Aswal DK (2016) Broadband enhancement in absorption cross-section of N719 dye using different anisotropic shaped single crystalline silver nanoparticle. RSC Adv 6:48064–48071CrossRef
13.
Zurück zum Zitat Tanvi Mahajan A, Bedi RK, Kumar S, Saxena V, Aswal DK (2015) Effect of the crystallinity of silver nanoparticles on surface plasmon resonance induced enhancement of effective absorption cross-section of dyes. J Appl Phys 117(83111):1–6 Tanvi Mahajan A, Bedi RK, Kumar S, Saxena V, Aswal DK (2015) Effect of the crystallinity of silver nanoparticles on surface plasmon resonance induced enhancement of effective absorption cross-section of dyes. J Appl Phys 117(83111):1–6
14.
Zurück zum Zitat Stuart HR, Hall Dennis G (1996) Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett 69:2327–2329CrossRef Stuart HR, Hall Dennis G (1996) Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett 69:2327–2329CrossRef
15.
Zurück zum Zitat Zhang L, Wang ZS (2016) Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells. J Mater Chem C 4:3614–3620CrossRef Zhang L, Wang ZS (2016) Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells. J Mater Chem C 4:3614–3620CrossRef
16.
Zurück zum Zitat Koo HJ, Kim YJ, Lee YH, Lee WI, Kim K, Park N-G (2008) Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv Mater 20:195–199CrossRef Koo HJ, Kim YJ, Lee YH, Lee WI, Kim K, Park N-G (2008) Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv Mater 20:195–199CrossRef
17.
Zurück zum Zitat Hwang SH, Kim C, Song H, Son S, Jang J (2012) Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Appl Mater Interfaces 4:5287–5292CrossRef Hwang SH, Kim C, Song H, Son S, Jang J (2012) Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Appl Mater Interfaces 4:5287–5292CrossRef
18.
Zurück zum Zitat Naphade RA, Tathavadekar M, Jog JP, Agarkar S, Ogale S (2014) Plasmonic light harvesting of dye-sensitized solar cells by Au-nanoparticle loaded TiO2 nanofibers. J Mater Chem A 2:975–984CrossRef Naphade RA, Tathavadekar M, Jog JP, Agarkar S, Ogale S (2014) Plasmonic light harvesting of dye-sensitized solar cells by Au-nanoparticle loaded TiO2 nanofibers. J Mater Chem A 2:975–984CrossRef
19.
Zurück zum Zitat Jun HK, Careem MA, Arof AK (2016) Plasmonic effects of quantum size gold nanoparticles on dye-sensitized solar cell. Mater Today Proc 35:573–579 Jun HK, Careem MA, Arof AK (2016) Plasmonic effects of quantum size gold nanoparticles on dye-sensitized solar cell. Mater Today Proc 35:573–579
20.
Zurück zum Zitat Al-Azawi MA, Bidin N, Bououdina M, Mohammad SM (2016) Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Sol Energy 126:93–104CrossRef Al-Azawi MA, Bidin N, Bououdina M, Mohammad SM (2016) Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Sol Energy 126:93–104CrossRef
21.
Zurück zum Zitat Lim SP, Pandikumar A, Lim HN, Ramaraj R, Huang NM (2015) Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-doped-TiO2 photoanode. Sci Rep 5(11922):1–14 Lim SP, Pandikumar A, Lim HN, Ramaraj R, Huang NM (2015) Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-doped-TiO2 photoanode. Sci Rep 5(11922):1–14
22.
Zurück zum Zitat Lim SP, Lim YS, Pandikumar A, Lim HN, Ng YH, Ramaraj R, Bien DCS, Abou-Zied OK, Huang NM (2017) Gold–silver–TiO2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Phys Chem Chem Phys 19:1395–1407CrossRef Lim SP, Lim YS, Pandikumar A, Lim HN, Ng YH, Ramaraj R, Bien DCS, Abou-Zied OK, Huang NM (2017) Gold–silver–TiO2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Phys Chem Chem Phys 19:1395–1407CrossRef
23.
Zurück zum Zitat Chander N, Khan AF, Thouti E, Sardana SK, Chandrasekhar PS, Dutta V, Komarala VK (2014) Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye-sensitized solar cells. Sol Energy 109:11–23CrossRef Chander N, Khan AF, Thouti E, Sardana SK, Chandrasekhar PS, Dutta V, Komarala VK (2014) Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye-sensitized solar cells. Sol Energy 109:11–23CrossRef
24.
Zurück zum Zitat Dao V-D, Choi H-S (2016) Highly-efficient plasmon-enhanced dye-sensitized solar cells created by means of dry plasma reduction. Nanomaterials 6(70):1–9 Dao V-D, Choi H-S (2016) Highly-efficient plasmon-enhanced dye-sensitized solar cells created by means of dry plasma reduction. Nanomaterials 6(70):1–9
26.
Zurück zum Zitat Li Y-Y, Wang J-G, Liu X-R, Shen C, Xie K, Wei B (2017) Au/TiO2 hollow spheres with synergistic effect of plasmonic enhancement and light scattering for improved dye-sensitized solar cells. ACS Appl Mater Interfaces 9:31691–31698CrossRef Li Y-Y, Wang J-G, Liu X-R, Shen C, Xie K, Wei B (2017) Au/TiO2 hollow spheres with synergistic effect of plasmonic enhancement and light scattering for improved dye-sensitized solar cells. ACS Appl Mater Interfaces 9:31691–31698CrossRef
28.
Zurück zum Zitat Pal A, Jana A, Bhattacharya S, Datta J (2017) SPR effect of AgNPs decorated TiO2 in DSSC using TPMPI in the electrolyte: approach towards low light trapping. Electrochim Acta 243:33–43CrossRef Pal A, Jana A, Bhattacharya S, Datta J (2017) SPR effect of AgNPs decorated TiO2 in DSSC using TPMPI in the electrolyte: approach towards low light trapping. Electrochim Acta 243:33–43CrossRef
29.
Zurück zum Zitat Pandikumar A, Suresh S, Murugesan S, Ramaraj R (2015) Dual functional TiO2–Au nanocomposite material for solid-state dye-sensitized solar cells. J Nanosci Nanotechnol 15:6965–6972CrossRef Pandikumar A, Suresh S, Murugesan S, Ramaraj R (2015) Dual functional TiO2–Au nanocomposite material for solid-state dye-sensitized solar cells. J Nanosci Nanotechnol 15:6965–6972CrossRef
30.
Zurück zum Zitat Dong H, Wu Z, El-Shafei A, Xia B, Xi J, Ning S, Jiao B, Hou X (2015) Ag-encapsulated Au plasmonic nanorods for enhanced dye-sensitized solar cell performance. J Mater Chem A 3:4659–4668CrossRef Dong H, Wu Z, El-Shafei A, Xia B, Xi J, Ning S, Jiao B, Hou X (2015) Ag-encapsulated Au plasmonic nanorods for enhanced dye-sensitized solar cell performance. J Mater Chem A 3:4659–4668CrossRef
32.
Zurück zum Zitat Wu W-Y, Hsu C-F, Wu M-J, Chen C-N, Huang J-J (2017) Ag–TiO2 composite photoelectrode for dye-sensitized solar cell. Appl Phys A 123(357):1–8 Wu W-Y, Hsu C-F, Wu M-J, Chen C-N, Huang J-J (2017) Ag–TiO2 composite photoelectrode for dye-sensitized solar cell. Appl Phys A 123(357):1–8
33.
Zurück zum Zitat Hong LV, Cat DT, Chi LH, Thuy NT, Hung TV, Tai LN, Long PD (2016) Plasmonic effect in Au-added TiO2-based solar cell. J Electron Mater 45:4833–4837CrossRef Hong LV, Cat DT, Chi LH, Thuy NT, Hung TV, Tai LN, Long PD (2016) Plasmonic effect in Au-added TiO2-based solar cell. J Electron Mater 45:4833–4837CrossRef
35.
Zurück zum Zitat Mubeen S, Sosa G-H, Moses D, Lee J, Moskovits M (2011) Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 11:5548–5552CrossRef Mubeen S, Sosa G-H, Moses D, Lee J, Moskovits M (2011) Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 11:5548–5552CrossRef
36.
Zurück zum Zitat Ghaffari M, BurakCosar M, Yavuz Halil I, Ozenbas M, Okyay Ali K (2012) Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells. Electrochim Acta 76:446–452CrossRef Ghaffari M, BurakCosar M, Yavuz Halil I, Ozenbas M, Okyay Ali K (2012) Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells. Electrochim Acta 76:446–452CrossRef
37.
Zurück zum Zitat Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ Sci 6:2156–2165CrossRef Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ Sci 6:2156–2165CrossRef
38.
Zurück zum Zitat Gangishetty MK, Eun Lee K, Scott RWJ, Kelly TL (2013) Plasmonic enhancement of dye sensitized solar cells in the red-to-near-infrared region using triangular core–shell Ag–SiO2 nanoparticles. ACS Appl Mater Interfaces 5(21):11044–11051CrossRef Gangishetty MK, Eun Lee K, Scott RWJ, Kelly TL (2013) Plasmonic enhancement of dye sensitized solar cells in the red-to-near-infrared region using triangular core–shell Ag–SiO2 nanoparticles. ACS Appl Mater Interfaces 5(21):11044–11051CrossRef
39.
Zurück zum Zitat Ng S-P, Lu XQ, Ding N, Wu C-ML, Lee C-S (2014) Plasmonic enhanced dye-sensitized solar cells with self-assembly gold–TiO2–core–shell nanoislands. Sol Energy 99:115–125CrossRef Ng S-P, Lu XQ, Ding N, Wu C-ML, Lee C-S (2014) Plasmonic enhanced dye-sensitized solar cells with self-assembly gold–TiO2–core–shell nanoislands. Sol Energy 99:115–125CrossRef
40.
Zurück zum Zitat Kim Y, Rai P, Yu Y-T (2013) Microwave assisted hydrothermal synthesis of Au–TiO2 core–shell nanoparticles for high temperature CO sensing applications. Sens Actuators B Chem 186:633–639CrossRef Kim Y, Rai P, Yu Y-T (2013) Microwave assisted hydrothermal synthesis of Au–TiO2 core–shell nanoparticles for high temperature CO sensing applications. Sens Actuators B Chem 186:633–639CrossRef
42.
Zurück zum Zitat Yang L, He D, Cai Q, Grimes CA (2007) Fabrication and catalytic properties of Co–Ag–Pt nanoparticle-decorated titania nanotube arrays. J Phys Chem C 111:8214–8217CrossRef Yang L, He D, Cai Q, Grimes CA (2007) Fabrication and catalytic properties of Co–Ag–Pt nanoparticle-decorated titania nanotube arrays. J Phys Chem C 111:8214–8217CrossRef
43.
Zurück zum Zitat Zhao J, Wu S, Liu J, Liu H, Gong S, Zhou D (2010) Tin oxide thin films prepared by aerosol-assisted chemical vapor deposition and the characteristics on gas detection. Sens Actuators B 145:788–793CrossRef Zhao J, Wu S, Liu J, Liu H, Gong S, Zhou D (2010) Tin oxide thin films prepared by aerosol-assisted chemical vapor deposition and the characteristics on gas detection. Sens Actuators B 145:788–793CrossRef
44.
Zurück zum Zitat Sahu G, Wang K, Gordon SW, Zhou W, Tarr MA (2012) Core–shell Au–TiO2 nanoarchitectures formed by pulsed laser deposition for enhanced efficiency in dye sensitized solar cells. RSC Adv 2:3791–3800CrossRef Sahu G, Wang K, Gordon SW, Zhou W, Tarr MA (2012) Core–shell Au–TiO2 nanoarchitectures formed by pulsed laser deposition for enhanced efficiency in dye sensitized solar cells. RSC Adv 2:3791–3800CrossRef
45.
Zurück zum Zitat Du J, Qi J, Wang D, Tang Z (2012) Facile synthesis of Au–TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ Sci 5:6914–6918CrossRef Du J, Qi J, Wang D, Tang Z (2012) Facile synthesis of Au–TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ Sci 5:6914–6918CrossRef
46.
Zurück zum Zitat Bhardwaj S, Pal A, Chatterjee K, Chowdhury P, Saha S, Barman A, Rana TH, Sharma GD, Biswas S (2017) Electrophoretic deposition of plasmonic nanocomposite for the fabrication of dye-sensitized solar cells. IJPAP 55:73–80 Bhardwaj S, Pal A, Chatterjee K, Chowdhury P, Saha S, Barman A, Rana TH, Sharma GD, Biswas S (2017) Electrophoretic deposition of plasmonic nanocomposite for the fabrication of dye-sensitized solar cells. IJPAP 55:73–80
47.
Zurück zum Zitat Grinis L, Dor S, Ofir A, Zaba A (2008) Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. J Photochem Photobiol A 198:52–59CrossRef Grinis L, Dor S, Ofir A, Zaba A (2008) Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. J Photochem Photobiol A 198:52–59CrossRef
48.
Zurück zum Zitat Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409CrossRef Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409CrossRef
49.
Zurück zum Zitat Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef
50.
Zurück zum Zitat Tahir M, Tahir B, Amin NAS (2017) Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl Catal B Environ 204:548–560CrossRef Tahir M, Tahir B, Amin NAS (2017) Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl Catal B Environ 204:548–560CrossRef
51.
Zurück zum Zitat Koura N, Tsukamoto T, Shoji H, Hotta T (1995) Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism. Jpn J App Phys 34:1643–1647CrossRef Koura N, Tsukamoto T, Shoji H, Hotta T (1995) Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism. Jpn J App Phys 34:1643–1647CrossRef
52.
Zurück zum Zitat Abazović ND, Čomor MI, Dramićanin MD, Jovanović DJ, Ahrenkiel SP, Nedeljković JM (2006) Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 110(50):25366–25370CrossRef Abazović ND, Čomor MI, Dramićanin MD, Jovanović DJ, Ahrenkiel SP, Nedeljković JM (2006) Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 110(50):25366–25370CrossRef
53.
Zurück zum Zitat Kern R, Sastrawan R, Ferber J, Stang R, Luther J (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 47:4213–4225CrossRef Kern R, Sastrawan R, Ferber J, Stang R, Luther J (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 47:4213–4225CrossRef
Metadaten
Titel
Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2–Au nanocomposite in TiO2 photoanode
verfasst von
Swati Bhardwaj
Arnab Pal
Kuntal Chatterjee
Tushar H. Rana
Gourav Bhattacharya
Susanta Sinha Roy
Papia Chowdhury
Ganesh D. Sharma
Subhayan Biswas
Publikationsdatum
05.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2156-0

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Science 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.