Skip to main content

2014 | OriginalPaper | Buchkapitel

Silicon and Germanium Junctionless Nanowire Transistors for Sensing and Digital Electronics Applications

verfasst von : Yordan M. Georgiev, Ran Yu, Nikolay Petkov, Olan Lotty, Adrian M. Nightingale, John C. deMello, Ray Duffy, Justin D. Holmes

Erschienen in: Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we introduce two specific types of junctionless nanowire transistors (JNTs): (i) silicon-on-insulator (SOI) back-gated JNTs for sensing applications and (ii) germanium-on-insulator (GeOI) top-gated JNTs for digital logic applications. We discuss in detail the suitability of junctionless architecture for these particular applications and present results on device fabrication and characterisation. Back-gated JNTs of 45 different channel geometries (different numbers, lengths, and widths of channel nanowires) have been designed and fabricated with very high precision (down to 10 nm widths of the nanowires) on SOI wafers using a fully CMOS-compatible fabrication process. Electrical characterisation of the fabricated devices has demonstrated their excellent performance as back-gated JNTs. Furthermore, data from pH and streptavidin sensing experiments have proven their good sensing properties. These JNTs are among the smallest top-down fabricated nanowire sensing devices reported to date. Top-gated JNTs with Ge nanowire channels of widths down to 20 nm have been fabricated by a simple CMOS-compatible process on GeOI wafers with a highly p-doped (~1×1019 cm−3) top germanium layer. The fabricated devices have demonstrated decent output and transfer characteristics with relatively high I on /I off current ratios of up to 2.0 × 105 and steep subthreshold slopes of 189 mV/dec. To the best of our knowledge, these are the first reported Ge JNTs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Ernst, T., et al.: Novel 3D integration process for highly scalable nano-beam stacked-channels GAA (NBG) Fin FETs with HfO2/TiN gate stack. In: IEEE International Electron Device Meeting (IEDM) Technical Digest, pp. 997–1001 (2006) Ernst, T., et al.: Novel 3D integration process for highly scalable nano-beam stacked-channels GAA (NBG) Fin FETs with HfO2/TiN gate stack. In: IEEE International Electron Device Meeting (IEDM) Technical Digest, pp. 997–1001 (2006)
4.
Zurück zum Zitat Buitrago, E., Fernandez-Bolaños, M., Georgiev, Y.M., Yu, R., Lotty, O., Holmes, J.D., Nightingale, A.M., Ionescu, A. M (2013) 3D silicon nanostructures for biosensing applications: functionalized 3D 7x20-array, vertically stacked SiNW FET for streptavidin sensing. In: 71st Annual Device Research Conference, DRC, Notre Dame, IN, USA (2013) Buitrago, E., Fernandez-Bolaños, M., Georgiev, Y.M., Yu, R., Lotty, O., Holmes, J.D., Nightingale, A.M., Ionescu, A. M (2013) 3D silicon nanostructures for biosensing applications: functionalized 3D 7x20-array, vertically stacked SiNW FET for streptavidin sensing. In: 71st Annual Device Research Conference, DRC, Notre Dame, IN, USA (2013)
5.
Zurück zum Zitat Colinge, J.P., et al.: SOI Gated Resistor: CMOS without Junctions. In: Proceedings of the IEEE International SOI Conference, paper 11.1 (2009) Colinge, J.P., et al.: SOI Gated Resistor: CMOS without Junctions. In: Proceedings of the IEEE International SOI Conference, paper 11.1 (2009)
6.
Zurück zum Zitat Colinge, J.P., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5–3, 225–229 (2010)CrossRef Colinge, J.P., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5–3, 225–229 (2010)CrossRef
7.
Zurück zum Zitat Ferain, I., Colinge, C.A., Colinge, J.P.: Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011)CrossRef Ferain, I., Colinge, C.A., Colinge, J.P.: Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011)CrossRef
8.
Zurück zum Zitat Colinge, J.P., et al.: Junctionless nanowire transistor (JNT): Properties and design guidelines. Solid-State Electron. 65–66, 33–37 (2011)CrossRef Colinge, J.P., et al.: Junctionless nanowire transistor (JNT): Properties and design guidelines. Solid-State Electron. 65–66, 33–37 (2011)CrossRef
9.
Zurück zum Zitat Ansari, L., et al.: Simulation of junctionless Si nanowire transistors with 3 nm gate length. Appl. Phys. Lett. 97, 062105 (2010)CrossRef Ansari, L., et al.: Simulation of junctionless Si nanowire transistors with 3 nm gate length. Appl. Phys. Lett. 97, 062105 (2010)CrossRef
10.
Zurück zum Zitat Migita, S., et al.: Electrical performances of junctionless-FETs at the scaling limit (LCH = 3 nm). In: IEEE International Electron Device Meeting (IEDM) Technical Digest. pp. 191–194 (2012) Migita, S., et al.: Electrical performances of junctionless-FETs at the scaling limit (LCH = 3 nm). In: IEEE International Electron Device Meeting (IEDM) Technical Digest. pp. 191–194 (2012)
11.
Zurück zum Zitat Park, C. –H., et al.: Comparative study of fabricated junctionless and inversion-mode nanowire FETs. In: Proceedings of the 69th Annual Device Research Conference, pp. 179–180. Santa Barbara, CA, USA (2011) Park, C. –H., et al.: Comparative study of fabricated junctionless and inversion-mode nanowire FETs. In: Proceedings of the 69th Annual Device Research Conference, pp. 179–180. Santa Barbara, CA, USA (2011)
12.
Zurück zum Zitat Gnani, E., et al.: Theory of the junctionless nanowire FET. IEEE Trans. Electron. Devices 58, 2903–2910 (2011)CrossRef Gnani, E., et al.: Theory of the junctionless nanowire FET. IEEE Trans. Electron. Devices 58, 2903–2910 (2011)CrossRef
13.
Zurück zum Zitat Su, C.-J., et al.: Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device Lett. 32, 521–523 (2011)CrossRef Su, C.-J., et al.: Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device Lett. 32, 521–523 (2011)CrossRef
14.
Zurück zum Zitat Zhao, D.D., et al.: Junctionless Ge p-Channel metal–oxide–semiconductor field-effect transistors fabricated on ultrathin Ge-on-insulator substrate. Appl. Phys. Express 4, 031302 (2011)CrossRef Zhao, D.D., et al.: Junctionless Ge p-Channel metal–oxide–semiconductor field-effect transistors fabricated on ultrathin Ge-on-insulator substrate. Appl. Phys. Express 4, 031302 (2011)CrossRef
15.
Zurück zum Zitat Cho, S., et al.: Silicon-compatible bulk-type compound junctionless field-effect transistor. In: Proceedings of ISDRS 2011, College Park, MD, USA, 7–9 Dec 2011 Cho, S., et al.: Silicon-compatible bulk-type compound junctionless field-effect transistor. In: Proceedings of ISDRS 2011, College Park, MD, USA, 7–9 Dec 2011
16.
Zurück zum Zitat Yokoyama, M., et al.: Sub-10-nm extremely thin body InGaAs-on-Insulator MOSFETs on Si wafers with ultrathin Al2O3 buried oxide layers. Electron Device Lett. 32, 1218–1220 (2011)CrossRef Yokoyama, M., et al.: Sub-10-nm extremely thin body InGaAs-on-Insulator MOSFETs on Si wafers with ultrathin Al2O3 buried oxide layers. Electron Device Lett. 32, 1218–1220 (2011)CrossRef
17.
Zurück zum Zitat Jiang, J., et al.: Junctionless in-plane-gate transparent thin-film transistors. Appl. Phys. Lett. 99, 193502 (2011)CrossRef Jiang, J., et al.: Junctionless in-plane-gate transparent thin-film transistors. Appl. Phys. Lett. 99, 193502 (2011)CrossRef
18.
Zurück zum Zitat Choi, S.-J., et al.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32, 125–127 (2011)CrossRef Choi, S.-J., et al.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32, 125–127 (2011)CrossRef
19.
Zurück zum Zitat Aldegunde, M., et al.: Study of discrete doping—induced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations. IEEE Electron Device Lett. 33, 194–196 (2012)CrossRef Aldegunde, M., et al.: Study of discrete doping—induced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations. IEEE Electron Device Lett. 33, 194–196 (2012)CrossRef
20.
Zurück zum Zitat Taur, Y., et al.: On–off charge–voltage characteristics and dopant number fluctuation effects in junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 863–866 (2012)CrossRef Taur, Y., et al.: On–off charge–voltage characteristics and dopant number fluctuation effects in junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 863–866 (2012)CrossRef
21.
Zurück zum Zitat Dehdashti, A.N., et al.: Random dopant variation in junctionless nanowire transistors. In: Proceedings of the IEEE International SOI Conference, pp. 55–56 (2011) Dehdashti, A.N., et al.: Random dopant variation in junctionless nanowire transistors. In: Proceedings of the IEEE International SOI Conference, pp. 55–56 (2011)
22.
Zurück zum Zitat Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505), 851–853 (2001)CrossRef Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505), 851–853 (2001)CrossRef
23.
Zurück zum Zitat Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)CrossRef Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)CrossRef
24.
Zurück zum Zitat Chen, K.I., Li, B.R., Chen, Y.T.: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)CrossRef Chen, K.I., Li, B.R., Chen, Y.T.: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)CrossRef
25.
Zurück zum Zitat Elfström, N., Juhasz, R., Sychugov, I., Engfeldt, T., Karlström, A.E., Linnros, J.: Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett. 7(9), 2608–2612 (2007)CrossRef Elfström, N., Juhasz, R., Sychugov, I., Engfeldt, T., Karlström, A.E., Linnros, J.: Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett. 7(9), 2608–2612 (2007)CrossRef
26.
Zurück zum Zitat Stern, E., et al.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007)CrossRef Stern, E., et al.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007)CrossRef
27.
Zurück zum Zitat Heitzinger, C., Klimeck, G.: Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection. J. Comput. Electron. 6(1), 387–390 (2007)CrossRef Heitzinger, C., Klimeck, G.: Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection. J. Comput. Electron. 6(1), 387–390 (2007)CrossRef
28.
Zurück zum Zitat Kim, A., et al.: Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91(10), 103901–103903 (2007)CrossRef Kim, A., et al.: Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91(10), 103901–103903 (2007)CrossRef
29.
Zurück zum Zitat Gao, P.A., Zheng, G., Lieber, C.M.: Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 10, 547–552 (2009)CrossRef Gao, P.A., Zheng, G., Lieber, C.M.: Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 10, 547–552 (2009)CrossRef
30.
Zurück zum Zitat Knopfmacher, O., Tarasov, A., Fu, W.Y., Wipf, M., Niesen, B., Calame, M., Schonenberger, C.: Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 10, 2268–2274 (2010)CrossRef Knopfmacher, O., Tarasov, A., Fu, W.Y., Wipf, M., Niesen, B., Calame, M., Schonenberger, C.: Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 10, 2268–2274 (2010)CrossRef
31.
Zurück zum Zitat Buitrago, E., Fagas, G., Fernández-Bolanos, M.B., Georgiev, Y.M., Berthomé, M., Ionescu, A.M.: Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens. Actuators, B 183, 1–10 (2013)CrossRef Buitrago, E., Fagas, G., Fernández-Bolanos, M.B., Georgiev, Y.M., Berthomé, M., Ionescu, A.M.: Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens. Actuators, B 183, 1–10 (2013)CrossRef
32.
Zurück zum Zitat Henschel, W., Georgiev, Y.M., Kurz, H.: Study of a high contrast process for hydrogen Silsesquioxane as a negative tone electron beam resist. J. Vac. Sci. Technol., B 21(5), 2018–2025 (2003)CrossRef Henschel, W., Georgiev, Y.M., Kurz, H.: Study of a high contrast process for hydrogen Silsesquioxane as a negative tone electron beam resist. J. Vac. Sci. Technol., B 21(5), 2018–2025 (2003)CrossRef
33.
Zurück zum Zitat Georgiev, Y.M., Henschel, W., Fuchs, A., Kurz, H.: Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist. Vacuum 77(2), 117–123 (2005)CrossRef Georgiev, Y.M., Henschel, W., Fuchs, A., Kurz, H.: Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist. Vacuum 77(2), 117–123 (2005)CrossRef
34.
Zurück zum Zitat Park, I., Li, Z., Li, X., Pisano, A.P., Williams, R.S.: Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens. Bioelectron. 22, 2065–2070 (2007)CrossRef Park, I., Li, Z., Li, X., Pisano, A.P., Williams, R.S.: Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens. Bioelectron. 22, 2065–2070 (2007)CrossRef
35.
Zurück zum Zitat Chen, Y., Wang, X., Erramilli, S., Mohanty, P., Kalinowski, A.: Silicon-based nanoelectronic field-effect pH sensor with local gate control. Appl. Phys. Lett. 89(22), 223512 (2006)CrossRef Chen, Y., Wang, X., Erramilli, S., Mohanty, P., Kalinowski, A.: Silicon-based nanoelectronic field-effect pH sensor with local gate control. Appl. Phys. Lett. 89(22), 223512 (2006)CrossRef
36.
Zurück zum Zitat Duffy, D.C., McDonald, J.C., Schueller, O.J.A., Whitesides, G.M.: Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)CrossRef Duffy, D.C., McDonald, J.C., Schueller, O.J.A., Whitesides, G.M.: Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)CrossRef
37.
Zurück zum Zitat Satyanarayana, S., Karnik, R.N., Majumdar, A.: Stamp-and-stick room-temperature bonding technique for microdevices. J. Microelectromech. Syst. 14(2), 392–399 (2005)CrossRef Satyanarayana, S., Karnik, R.N., Majumdar, A.: Stamp-and-stick room-temperature bonding technique for microdevices. J. Microelectromech. Syst. 14(2), 392–399 (2005)CrossRef
38.
Zurück zum Zitat Pantisano, L., Trojman, L., Mitard, J., DeJaeger, B., Severi, S., Eneman, G., Crupi, G., Hoffmann, T., Ferain, I., Meuris, M., Heyns, M.: Fundamentals and extraction of velocity saturation in sub-100 nm (110)-Si and (100)-Ge. In: IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 52-53 (2008) Pantisano, L., Trojman, L., Mitard, J., DeJaeger, B., Severi, S., Eneman, G., Crupi, G., Hoffmann, T., Ferain, I., Meuris, M., Heyns, M.: Fundamentals and extraction of velocity saturation in sub-100 nm (110)-Si and (100)-Ge. In: IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 52-53 (2008)
39.
Zurück zum Zitat Natori, K.: Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 76, 4879 (1994)CrossRef Natori, K.: Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 76, 4879 (1994)CrossRef
40.
Zurück zum Zitat Kuhn, K.J., et al.: Past, present and future: SiGe and CMOS transistor scaling. ECS Trans. 33(6), 3–17 (2010)CrossRef Kuhn, K.J., et al.: Past, present and future: SiGe and CMOS transistor scaling. ECS Trans. 33(6), 3–17 (2010)CrossRef
41.
Zurück zum Zitat Colinge, J.-P., et al.: Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96(7), 073510 (2010)CrossRef Colinge, J.-P., et al.: Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96(7), 073510 (2010)CrossRef
42.
Zurück zum Zitat Nakaharai, S., et al.: Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique. Appl. Phys. Lett. 83(17), 3516–3518 (2003)CrossRef Nakaharai, S., et al.: Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique. Appl. Phys. Lett. 83(17), 3516–3518 (2003)CrossRef
43.
Zurück zum Zitat Deguet, C., et al.: Fabrication and characterisation of 200 mm germanium-on-insulator (GeOI) substrates made from bulk germanium. Electron. Lett. 42(7), 415–417 (2006) Deguet, C., et al.: Fabrication and characterisation of 200 mm germanium-on-insulator (GeOI) substrates made from bulk germanium. Electron. Lett. 42(7), 415–417 (2006)
44.
Zurück zum Zitat Yu, R., et al.: Fabrication of germanium-on-insulator by low temperature direct wafer bonding. In: 10th IEEE International Conference on Solid-State and Integrated Circuit Technol (ICSICT): 953 (2010) Yu, R., et al.: Fabrication of germanium-on-insulator by low temperature direct wafer bonding. In: 10th IEEE International Conference on Solid-State and Integrated Circuit Technol (ICSICT): 953 (2010)
45.
Zurück zum Zitat Namatsu, H., et al.: Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations. J. Vac. Sci. Technol., B 16, 69 (1998)CrossRef Namatsu, H., et al.: Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations. J. Vac. Sci. Technol., B 16, 69 (1998)CrossRef
46.
Zurück zum Zitat Hobbs, R.G., Schmidt, M., Bolger, C.T., Georgiev Y.M., Xiu, F., Wang, K.L., Fleming, P., Morris, M.A., Djara, V., Yu, R., Colinge, J.-P., Petkov, N., Holmes, J.D.: Resist-substrate interface tailoring for generating high density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. Vac. Sci. Technol. B 30(4), 041602(1)–041602(7) (2012) Hobbs, R.G., Schmidt, M., Bolger, C.T., Georgiev Y.M., Xiu, F., Wang, K.L., Fleming, P., Morris, M.A., Djara, V., Yu, R., Colinge, J.-P., Petkov, N., Holmes, J.D.: Resist-substrate interface tailoring for generating high density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. Vac. Sci. Technol. B 30(4), 041602(1)–041602(7) (2012)
47.
Zurück zum Zitat Hobbs, R. G., Petkov, N., Holmes, J. D.: Methods and materials for lithography of a high resolution HSQ resist, European Patent Number: 11163598.3 (2012) Hobbs, R. G., Petkov, N., Holmes, J. D.: Methods and materials for lithography of a high resolution HSQ resist, European Patent Number: 11163598.3 (2012)
48.
Zurück zum Zitat Yu, R., Das, S., Hobbs, R., Georgiev, Y., Ferain, I., Razavi, P., et al.: Top-down process of germanium nanowires using EBL exposure of hydrogen Silsesquioxane resist. In: IEEE 13th International Conference on Ultimate Integration on Silicon (ULIS). pp. 145–148 (2012) Yu, R., Das, S., Hobbs, R., Georgiev, Y., Ferain, I., Razavi, P., et al.: Top-down process of germanium nanowires using EBL exposure of hydrogen Silsesquioxane resist. In: IEEE 13th International Conference on Ultimate Integration on Silicon (ULIS). pp. 145–148 (2012)
49.
Zurück zum Zitat Matsubara, H., Sasada, T., Takenaka, M., Takagi, S.: Evidence of low interface trap density in GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation. Appl. Phys. Lett. 93, 032104 (2008)CrossRef Matsubara, H., Sasada, T., Takenaka, M., Takagi, S.: Evidence of low interface trap density in GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation. Appl. Phys. Lett. 93, 032104 (2008)CrossRef
50.
Zurück zum Zitat Xie, R., He, W., Yu, M., Zhu, C.: Effects of fluorine incorporation and forming gas annealing on high-k gated germanium metal-oxide-semiconductor with GeO2 surface passivation. Appl. Phys. Lett. 93, 073503–073504 (2008)CrossRef Xie, R., He, W., Yu, M., Zhu, C.: Effects of fluorine incorporation and forming gas annealing on high-k gated germanium metal-oxide-semiconductor with GeO2 surface passivation. Appl. Phys. Lett. 93, 073503–073504 (2008)CrossRef
Metadaten
Titel
Silicon and Germanium Junctionless Nanowire Transistors for Sensing and Digital Electronics Applications
verfasst von
Yordan M. Georgiev
Ran Yu
Nikolay Petkov
Olan Lotty
Adrian M. Nightingale
John C. deMello
Ray Duffy
Justin D. Holmes
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-08804-4_17

Neuer Inhalt