Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

9. Silicon Micro-/Nanomachining and Applications

verfasst von: Hoang-Phuong Phan, Dzung Viet Dao, Nam-Trung Nguyen

Erschienen in: Micro and Nanomanufacturing Volume II

Verlag: Springer International Publishing

share
TEILEN

Abstract

The invention of silicon (Si)-based diodes and especially the Si bipolar transistors by Shockley, Bardeen, and Brattain seven decades ago has triggered the era of fast-growing information and computer technologies. As a consequence, the development into microelectronic fabrication technologies has also been extensively investigated and progressed to reduce device size and to increase the integration, as well as to enhance their performance. The growing rate of the state-of-the-art microprocessors has reached above Moore’s law, which states that the number of transistors on a chip doubles roughly every 2 years. This achievement is largely attributed to the advanced micro- and nanofabrication processing [1].

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Venema L (2011) Silicon electronics and beyond. Nature 479(7373):309–309 CrossRef Venema L (2011) Silicon electronics and beyond. Nature 479(7373):309–309 CrossRef
2.
Zurück zum Zitat Gad-el-Hak M (ed) (2001) The MEMS handbook. CRC Press, Boca Raton MATH Gad-el-Hak M (ed) (2001) The MEMS handbook. CRC Press, Boca Raton MATH
3.
Zurück zum Zitat Mnyusiwalla A, Daar AS, Singer PA (2003) Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14(3):R9 CrossRef Mnyusiwalla A, Daar AS, Singer PA (2003) Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14(3):R9 CrossRef
4.
Zurück zum Zitat Shimura F (ed) (2012) Semiconductor silicon crystal technology. Elsevier, Amsterdam Shimura F (ed) (2012) Semiconductor silicon crystal technology. Elsevier, Amsterdam
5.
Zurück zum Zitat Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken CrossRef Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken CrossRef
6.
Zurück zum Zitat Ghibaudo G, Rafhay Q (2014) Electron and hole mobility in semiconductor devices. Wiley Encyclopedia of Electrical and Electronics Engineering Ghibaudo G, Rafhay Q (2014) Electron and hole mobility in semiconductor devices. Wiley Encyclopedia of Electrical and Electronics Engineering
7.
Zurück zum Zitat Klaassen DBM (1992) A unified mobility model for device simulation -II. Temperature dependence of carrier mobility and lifetime. Solid-State Electron 35(7):961–967 CrossRef Klaassen DBM (1992) A unified mobility model for device simulation -II. Temperature dependence of carrier mobility and lifetime. Solid-State Electron 35(7):961–967 CrossRef
8.
Zurück zum Zitat Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19(2):229–238 CrossRef Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19(2):229–238 CrossRef
9.
Zurück zum Zitat Shanks HR et al (1963) Thermal conductivity of silicon from 300 to 1400 K. Phys Rev 130(5):1743 CrossRef Shanks HR et al (1963) Thermal conductivity of silicon from 300 to 1400 K. Phys Rev 130(5):1743 CrossRef
10.
Zurück zum Zitat Plummer JD (2009) Silicon VLSI technology: fundamentals, practice, and modeling. Pearson Education India, London Plummer JD (2009) Silicon VLSI technology: fundamentals, practice, and modeling. Pearson Education India, London
11.
Zurück zum Zitat Maleville C et al (1997) Wafer bonding and H-implantation mechanisms involved in the Smart-cut technology. Mater Sci Eng B 46(1):14–19 CrossRef Maleville C et al (1997) Wafer bonding and H-implantation mechanisms involved in the Smart-cut technology. Mater Sci Eng B 46(1):14–19 CrossRef
12.
Zurück zum Zitat Mark Noworolski J et al (1996) Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etch back. Sens Actuat A Phys 54(1):709–713 CrossRef Mark Noworolski J et al (1996) Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etch back. Sens Actuat A Phys 54(1):709–713 CrossRef
13.
Zurück zum Zitat Sparks DR et al (1995) Method of micromachining an integrated sensor on the surface of a silicon wafer .US Patent No. 5, pp 427–975 Sparks DR et al (1995) Method of micromachining an integrated sensor on the surface of a silicon wafer .US Patent No. 5, pp 427–975
14.
Zurück zum Zitat Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, Hoboken CrossRef Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, Hoboken CrossRef
15.
Zurück zum Zitat Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vet- tiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121 CrossRef Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vet- tiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121 CrossRef
16.
Zurück zum Zitat Thong JTL, Choi WK, Chong CW (1997) TMAH etching of silicon and the interaction of etching parameters. Sens Actuat A Phys 63(3):243–249 CrossRef Thong JTL, Choi WK, Chong CW (1997) TMAH etching of silicon and the interaction of etching parameters. Sens Actuat A Phys 63(3):243–249 CrossRef
17.
Zurück zum Zitat Tanaka H et al (2004) Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sens Actuat A Phys 114(2):516–520 CrossRef Tanaka H et al (2004) Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sens Actuat A Phys 114(2):516–520 CrossRef
18.
Zurück zum Zitat Dutta S, Md I, Kumar P, Pal R, Datta P, Chatterjee R (2011) Comparison of etch characteristics of KOH, TMAH and EDP for bulk micromachining of silicon (110). Microsyst Technol 17:1621–1628 CrossRef Dutta S, Md I, Kumar P, Pal R, Datta P, Chatterjee R (2011) Comparison of etch characteristics of KOH, TMAH and EDP for bulk micromachining of silicon (110). Microsyst Technol 17:1621–1628 CrossRef
19.
Zurück zum Zitat Nicolas M, Perney B, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM (2006) Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt Express 14(2):847857 Nicolas M, Perney B, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM (2006) Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt Express 14(2):847857
20.
Zurück zum Zitat Klaassen EH et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens Actuat A Phys 52(1):132–139 CrossRef Klaassen EH et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens Actuat A Phys 52(1):132–139 CrossRef
21.
Zurück zum Zitat Manos DM, Flamm DL (eds) (1989) Plasma etching: an introduction. Elsevier, Amsterdam Manos DM, Flamm DL (eds) (1989) Plasma etching: an introduction. Elsevier, Amsterdam
22.
Zurück zum Zitat Jansen H et al (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6(1):14 CrossRef Jansen H et al (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6(1):14 CrossRef
23.
Zurück zum Zitat Ayazi F, Najafi K (2000) High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology. J Microelectromech Syst 9(3):288–294 CrossRef Ayazi F, Najafi K (2000) High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology. J Microelectromech Syst 9(3):288–294 CrossRef
24.
Zurück zum Zitat Usenko AY (2002) Process for lift-off of a layer from a substrate. US Patent No. 6352909 Usenko AY (2002) Process for lift-off of a layer from a substrate. US Patent No. 6352909
25.
Zurück zum Zitat Yazdi N, Khalil N (2000) An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J Microelectromech Syst 9(4):544–550 CrossRef Yazdi N, Khalil N (2000) An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J Microelectromech Syst 9(4):544–550 CrossRef
26.
Zurück zum Zitat Howe RT (1988) Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 6(6):1809–1813 CrossRef Howe RT (1988) Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 6(6):1809–1813 CrossRef
27.
Zurück zum Zitat Smith HI, Flanders DC (1980) X-ray lithography—a review and assessment of future applications. J Vac Sci Technol 171:533–535 CrossRef Smith HI, Flanders DC (1980) X-ray lithography—a review and assessment of future applications. J Vac Sci Technol 171:533–535 CrossRef
28.
Zurück zum Zitat Phan H-P et al (2016) Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Sci Rep 6:28499 CrossRef Phan H-P et al (2016) Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Sci Rep 6:28499 CrossRef
29.
Zurück zum Zitat Neukermans AP et al (1986) Silicon carbide film for X-ray masks and vacuum windows. US Patent No. 4608326 Neukermans AP et al (1986) Silicon carbide film for X-ray masks and vacuum windows. US Patent No. 4608326
30.
Zurück zum Zitat Hruby J (2001) LIGA technologies and applications. MRS Bull 26(4):337–340 CrossRef Hruby J (2001) LIGA technologies and applications. MRS Bull 26(4):337–340 CrossRef
31.
Zurück zum Zitat Tseng AA et al (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manufact 26(2):141–149 CrossRef Tseng AA et al (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manufact 26(2):141–149 CrossRef
32.
Zurück zum Zitat Tseng AA (2005) Recent developments in nanofabrication using focused ion beams. Small 1(10):924–939 CrossRef Tseng AA (2005) Recent developments in nanofabrication using focused ion beams. Small 1(10):924–939 CrossRef
33.
Zurück zum Zitat Phan H-P et al (2015) Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv 5(100):82121–82126 CrossRef Phan H-P et al (2015) Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv 5(100):82121–82126 CrossRef
34.
Zurück zum Zitat Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23(3):877–894 CrossRef Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23(3):877–894 CrossRef
35.
Zurück zum Zitat McCord MA, Pease RFW (1986) Lithography with the scanning tunneling microscope. J Vac Sci Technol B41:86–88 CrossRef McCord MA, Pease RFW (1986) Lithography with the scanning tunneling microscope. J Vac Sci Technol B41:86–88 CrossRef
36.
Zurück zum Zitat Hu S et al (1998) Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. J Vac Sci Technol B 16(5):2822–2824 CrossRef Hu S et al (1998) Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. J Vac Sci Technol B 16(5):2822–2824 CrossRef
37.
Zurück zum Zitat Terris BD, Mamin HJ, Best ME, Logan JA, Rugar D, Rishton SA (1996) Nanoscale replication for scanning probe data storage. Appl Phys Lett 69:4262 CrossRef Terris BD, Mamin HJ, Best ME, Logan JA, Rugar D, Rishton SA (1996) Nanoscale replication for scanning probe data storage. Appl Phys Lett 69:4262 CrossRef
38.
Zurück zum Zitat Eleftheriou E, Antonakopoulos T, Binnig GK, Cherubini G, Despont M, Dholakia A, Durig U et al (2003) Millipede—a MEMS-based scanning-probe datastorage system. IEEE Trans Magn 39(2):938–945 CrossRef Eleftheriou E, Antonakopoulos T, Binnig GK, Cherubini G, Despont M, Dholakia A, Durig U et al (2003) Millipede—a MEMS-based scanning-probe datastorage system. IEEE Trans Magn 39(2):938–945 CrossRef
39.
Zurück zum Zitat Phan H-P et al (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24(6):1663–1677 CrossRef Phan H-P et al (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24(6):1663–1677 CrossRef
40.
Zurück zum Zitat Bell DJ et al (2005) MEMS actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153 CrossRef Bell DJ et al (2005) MEMS actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153 CrossRef
41.
Zurück zum Zitat Minh-Dung N et al (2013) A sensitive liquid-cantilever diaphragm for pressure sensor. In: 2013 I.E. 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE Minh-Dung N et al (2013) A sensitive liquid-cantilever diaphragm for pressure sensor. In: 2013 I.E. 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE
42.
Zurück zum Zitat Minh-Dung N et al (2013) A hydrophone using liquid to bridge the gap of a piezo-resistive cantilever. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII). IEEE Minh-Dung N et al (2013) A hydrophone using liquid to bridge the gap of a piezo-resistive cantilever. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII). IEEE
43.
Zurück zum Zitat Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6(5):530 CrossRef Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6(5):530 CrossRef
44.
Zurück zum Zitat Laghrouche M, Adane A, Boussey J, Ameur S, Meunier D, Tardu S (2005) A miniature silicon hot wire sensor for automatic wind speed measurements. Renew Energy 30(12):1881–1896 CrossRef Laghrouche M, Adane A, Boussey J, Ameur S, Meunier D, Tardu S (2005) A miniature silicon hot wire sensor for automatic wind speed measurements. Renew Energy 30(12):1881–1896 CrossRef
45.
Zurück zum Zitat Kuo JT, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3(3):550–573 CrossRef Kuo JT, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3(3):550–573 CrossRef
46.
Zurück zum Zitat Dinh T et al (2015) Graphite on paper as material for sensitive thermoresistive sensors. J Mater Chem C 3(34):8776–8779 CrossRef Dinh T et al (2015) Graphite on paper as material for sensitive thermoresistive sensors. J Mater Chem C 3(34):8776–8779 CrossRef
47.
Zurück zum Zitat Birner A et al (2001) Silicon-based photonic crystals. Adv Mater 13(6):377388 CrossRef Birner A et al (2001) Silicon-based photonic crystals. Adv Mater 13(6):377388 CrossRef
48.
Zurück zum Zitat Bui TT, Dao DV et al (2011) Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity. Opt Express 19(9):8821–8829 CrossRef Bui TT, Dao DV et al (2011) Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity. Opt Express 19(9):8821–8829 CrossRef
49.
Zurück zum Zitat Dao DV et al (2010) Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol 1(1):013001 CrossRef Dao DV et al (2010) Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol 1(1):013001 CrossRef
50.
Zurück zum Zitat Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64 CrossRef Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64 CrossRef
51.
Zurück zum Zitat Feng XL et al (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7(7):1953–1959 CrossRef Feng XL et al (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7(7):1953–1959 CrossRef
52.
Zurück zum Zitat Cleland AN, Roukes ML (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett 6918:2653–2655 CrossRef Cleland AN, Roukes ML (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett 6918:2653–2655 CrossRef
Metadaten
Titel
Silicon Micro-/Nanomachining and Applications
verfasst von
Hoang-Phuong Phan
Dzung Viet Dao
Nam-Trung Nguyen
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67132-1_9

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.