2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Data Science
With the development of smart cities, 3D city models have expanded from simple visualization to more applications. However, the data volume of 3D city models is also increasing at the same time, which brings great pressure to data storage and visualization. Therefore, it is necessary to simplify 3D models. In this paper, a three-step simplification method is proposed. Firstly, the geometric features of the building are used to extract the walls and roof of the building separately, and then the ground plan and the single-layer roof are extracted by the K-Means clustering algorithm. Finally, the ground plan is raised to intersect with the roof polygon to form a simplified three-dimensional city model. In this paper, experiments are carried out on a certain number of 3D city models of CityGML format. The compression ratio of model data is 92.08%, the simplification result shows better than others.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Lan, R., Wang, J.: Research on support evaluation system of spatial information infrastructure in smart cities. J. Surv. Mapp. Sci. Technol. (1), 78–81 (2015) Lan, R., Wang, J.: Research on support evaluation system of spatial information infrastructure in smart cities. J. Surv. Mapp. Sci. Technol. (1), 78–81 (2015)
2.
Zurück zum Zitat Kada, M.: 3D Building generalization based on half-space modeling. In: Proceedings of the ISPRS Workshop on Multiple Representation and Interoperability of Spatial Data (2006) Kada, M.: 3D Building generalization based on half-space modeling. In: Proceedings of the ISPRS Workshop on Multiple Representation and Interoperability of Spatial Data (2006)
3.
Zurück zum Zitat Baig, S.U., Rahman, A.A.: A three-step strategy for generalization of 3D building models based on CityGML specifications. GeoJournal 78(6), 1013–1020 (2013) CrossRef Baig, S.U., Rahman, A.A.: A three-step strategy for generalization of 3D building models based on CityGML specifications. GeoJournal
78(6), 1013–1020 (2013)
CrossRef
4.
Zurück zum Zitat Li, Q., Sun, X., Yang, B., et al.: Geometric structure simplification of 3D building models[J]. ISPRS J. Photogram. Remote Sens. 84, 100–113 (2013) CrossRef Li, Q., Sun, X., Yang, B., et al.: Geometric structure simplification of 3D building models[J]. ISPRS J. Photogram. Remote Sens.
84, 100–113 (2013)
CrossRef
5.
Zurück zum Zitat Ying, S., Guo, R., Li, L., et al.: Construction of 3D volumetric objects for a 3D cadastral system. Trans. GIS 19(5), 758–779 (2015) CrossRef Ying, S., Guo, R., Li, L., et al.: Construction of 3D volumetric objects for a 3D cadastral system. Trans. GIS
19(5), 758–779 (2015)
CrossRef
6.
Zurück zum Zitat Fan, H., Meng, L., Jahnke, M.: Generalization of 3D Buildings Modelled by CityGML. In: Advances in GIScience, Proceedings of the Agile Conference, Hannover, Germany, 2–5 June. DBLP, pp. 387-405 (2009) Fan, H., Meng, L., Jahnke, M.: Generalization of 3D Buildings Modelled by CityGML. In: Advances in GIScience, Proceedings of the Agile Conference, Hannover, Germany, 2–5 June. DBLP, pp. 387-405 (2009)
7.
Zurück zum Zitat Fan, H., Meng, L.: A three-step approach of simplifying 3D buildings modeled by CityGML. Int. J. Geogr. Inf. Sci. 26(6), 1091–1107 (2012) CrossRef Fan, H., Meng, L.: A three-step approach of simplifying 3D buildings modeled by CityGML. Int. J. Geogr. Inf. Sci.
26(6), 1091–1107 (2012)
CrossRef
8.
Zurück zum Zitat Mao, B., Ban, Y., Harrie, L.: A multiple representation data structure for dynamic visualisation of generalised 3D city models[J]. ISPRS J. Photogram Remote Sens. 66(2), 198–208 (2011) CrossRef Mao, B., Ban, Y., Harrie, L.: A multiple representation data structure for dynamic visualisation of generalised 3D city models[J]. ISPRS J. Photogram Remote Sens.
66(2), 198–208 (2011)
CrossRef
9.
Zurück zum Zitat Biljecki, F., Ledoux, H., Stoter, J., et al.: Formalisation of the level of detail in 3D city modelling. Comput. Environ. Urban Syst. 48(16), 1–15 (2014) CrossRef Biljecki, F., Ledoux, H., Stoter, J., et al.: Formalisation of the level of detail in 3D city modelling. Comput. Environ. Urban Syst.
48(16), 1–15 (2014)
CrossRef
10.
Zurück zum Zitat Geiger, A., Benner, J., Haefele, K.: Generalization of 3D IFC building models. In: Breunig, M., Al-Doori, M., Butwilowsk, E., Kuper, P., Benner, J., Haefele, K. (eds.) 3D Geoinformation Science., pp. 19–35. Springer, Cham (2015) CrossRef Geiger, A., Benner, J., Haefele, K.: Generalization of 3D IFC building models. In: Breunig, M., Al-Doori, M., Butwilowsk, E., Kuper, P., Benner, J., Haefele, K. (eds.) 3D Geoinformation Science., pp. 19–35. Springer, Cham (2015)
CrossRef
11.
Zurück zum Zitat Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: Proceedings of ACM Symposium on Solid Modeling and Applications, pp. 139–158 (2009) Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: Proceedings of ACM Symposium on Solid Modeling and Applications, pp. 139–158 (2009)
12.
Zurück zum Zitat Buchanan, K., Gaytan, D., Xu, L., Dilay, C., Hilton, D.: Spatial K-means clustering of HF noise trends in Southern California waters. 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, pp. 1–2 (2018) Buchanan, K., Gaytan, D., Xu, L., Dilay, C., Hilton, D.: Spatial K-means clustering of HF noise trends in Southern California waters. 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, pp. 1–2 (2018)
13.
Zurück zum Zitat Shao, Lun, Zhou, Xinzhi, et al.: Improved K-means clustering algorithm based on multi-dimensional grid space. Comput. Appl. 38(10), 104–109 (2018) Shao, Lun, Zhou, Xinzhi, et al.: Improved K-means clustering algorithm based on multi-dimensional grid space. Comput. Appl.
38(10), 104–109 (2018)
14.
Zurück zum Zitat Zhang, C., Mao, B.: 3D Building models segmentation based on K-means++ cluster analysis. In:. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, vol. XLII-2/W2, pp. 57–61 (2016) Zhang, C., Mao, B.: 3D Building models segmentation based on K-means++ cluster analysis. In:. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, vol. XLII-2/W2, pp. 57–61 (2016)
15.
Zurück zum Zitat Graham, R.L.: An efficient algorithm for determining the convex hull of a planar set. Inf. Process.Lett. 1, 132–133 (1972) CrossRef Graham, R.L.: An efficient algorithm for determining the convex hull of a planar set. Inf. Process.Lett.
1, 132–133 (1972)
CrossRef
- Titel
- Simplification of 3D City Models Based on K-Means Clustering
- DOI
- https://doi.org/10.1007/978-981-15-2810-1_4
- Autoren:
-
Hui Cheng
Bingchan Li
Bo Mao
- Verlag
- Springer Singapore
- Sequenznummer
- 4