Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Simulating Droplet Microfluidic Networks

verfasst von : Andreas Grimmer, Robert Wille

Erschienen in: Designing Droplet Microfluidic Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When designing a droplet microfluidic network, a huge number of parameters have to be considered, which finally have to implement the desired functionality. This results in a complex task as design parameters often depend on and affect each other. In order to handle this complex task, models and simulation methods can be employed in the design process. These models and simulation methods allow for deriving the design, for validating the functionality of the design, and for exploring alternative designs.
However, state-of-the-art simulation tools come with severe limitations, which prevent their utilization for practically relevant applications. More precisely, they are often not dedicated to droplet microfluidics, cannot handle the required physical phenomena, are not publicly available, and can hardly be extended. To address these shortcomings, this chapter introduces an advanced simulation framework at the one-dimensional analysis model, which, eventually, allows to simulate practically relevant applications.
In order to describe the advanced simulation framework, this chapter first reviews abstraction levels—especially the one-dimensional analysis model. Based on that, an advanced simulation framework is proposed, which is finally applied for the design of a practically relevant microfluidic network. A case study demonstrates that using the proposed simulation framework allows to reduce the manual design time and costs, e.g., of a drug screening device from one person month and USD 1200, respectively, to just a fraction of that.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that, further details on the maximal possible pressure are provided later when possible designs are explored using simulation.
 
Literatur
3.
Zurück zum Zitat Ansys Inc., Ansys Fluent Theory Guide (Ansys Inc., Canonsburg, 2011), p. 794 Ansys Inc., Ansys Fluent Theory Guide (Ansys Inc., Canonsburg, 2011), p. 794
4.
Zurück zum Zitat M.D. Behzad, H. Seyed-Allaei, M.R. Ejtehadi, Simulation of droplet trains in microfluidic networks. Phys. Rev. E 82(3), 037303 (2010) M.D. Behzad, H. Seyed-Allaei, M.R. Ejtehadi, Simulation of droplet trains in microfluidic networks. Phys. Rev. E 82(3), 037303 (2010)
6.
Zurück zum Zitat A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef
7.
Zurück zum Zitat A. Biral, D. Zordan, A. Zanella, Modeling, simulation and experimentation of droplet-based microfluidic networks. Trans. Mol. Biol. Multi-scale Commun. 1(2), 122–134 (2015)CrossRef A. Biral, D. Zordan, A. Zanella, Modeling, simulation and experimentation of droplet-based microfluidic networks. Trans. Mol. Biol. Multi-scale Commun. 1(2), 122–134 (2015)CrossRef
10.
Zurück zum Zitat H. Bruus, Theoretical Microfluidics, vol. 18 (Oxford University Press, Oxford, 2008) H. Bruus, Theoretical Microfluidics, vol. 18 (Oxford University Press, Oxford, 2008)
11.
Zurück zum Zitat G. Castorina, M. Reno, L. Galluccio, A. Lombardo, Microfluidic networking: switching multidroplet frames to improve signaling overhead. Nano Commun. Netw. 14, 48–59 (2017)CrossRef G. Castorina, M. Reno, L. Galluccio, A. Lombardo, Microfluidic networking: switching multidroplet frames to improve signaling overhead. Nano Commun. Netw. 14, 48–59 (2017)CrossRef
13.
Zurück zum Zitat X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)CrossRef X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)CrossRef
18.
Zurück zum Zitat Comsol Multiphysics, Comsol Multiphysics User Guide (version 4.3 a). COMSOL AB, 2012), pp. 39–40 Comsol Multiphysics, Comsol Multiphysics User Guide (version 4.3 a). COMSOL AB, 2012), pp. 39–40
21.
Zurück zum Zitat O. Cybulski, P. Garstecki, Dynamic memory in a microfluidic system of droplets traveling through a simple network of microchannels. Lab Chip 10(4), 484–493 (2010)CrossRef O. Cybulski, P. Garstecki, Dynamic memory in a microfluidic system of droplets traveling through a simple network of microchannels. Lab Chip 10(4), 484–493 (2010)CrossRef
30.
Zurück zum Zitat W. Engl, M. Roche, A. Colin, P. Panizza, A. Ajdari, Droplet traffic at a simple junction at low capillary numbers. Phys. Rev. Lett. 95(20), 208304 (2005) W. Engl, M. Roche, A. Colin, P. Panizza, A. Ajdari, Droplet traffic at a simple junction at low capillary numbers. Phys. Rev. Lett. 95(20), 208304 (2005)
32.
Zurück zum Zitat M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef
34.
Zurück zum Zitat P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3), 437–446 (2006)CrossRef P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3), 437–446 (2006)CrossRef
35.
Zurück zum Zitat T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)CrossRef T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)CrossRef
36.
Zurück zum Zitat T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)CrossRef T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)CrossRef
37.
Zurück zum Zitat T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef
40.
Zurück zum Zitat N. Gleichmann, D. Malsch, P. Horbert, T. Henkel, Toward microfluidic design automation: a new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems. Microfluid. Nanofluid. 18(5–6), 1095–1105 (2015)CrossRef N. Gleichmann, D. Malsch, P. Horbert, T. Henkel, Toward microfluidic design automation: a new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems. Microfluid. Nanofluid. 18(5–6), 1095–1105 (2015)CrossRef
41.
Zurück zum Zitat G.H. Golub, C.F. Van Loan, Matrix Computations, vol. 3 (JHU Press, Baltimore, 2012)MATH G.H. Golub, C.F. Van Loan, Matrix Computations, vol. 3 (JHU Press, Baltimore, 2012)MATH
42.
Zurück zum Zitat C.J. Greenshields, Openfoam User Guide, version, 3(1) (OpenFOAM Foundation Ltd, 2015) C.J. Greenshields, Openfoam User Guide, version, 3(1) (OpenFOAM Foundation Ltd, 2015)
46.
Zurück zum Zitat A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)CrossRef A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)CrossRef
55.
Zurück zum Zitat H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef
66.
Zurück zum Zitat F. Jousse, G. Lian, R. Janes, J. Melrose, Compact model for multi-phase liquid–liquid flows in micro-fluidic devices. Lab Chip 5(6), 646–656 (2005)CrossRef F. Jousse, G. Lian, R. Janes, J. Melrose, Compact model for multi-phase liquid–liquid flows in micro-fluidic devices. Lab Chip 5(6), 646–656 (2005)CrossRef
67.
Zurück zum Zitat F. Jousse, R. Farr, D.R. Link, M.J. Fuerstman, P. Garstecki, Bifurcation of droplet flows within capillaries. Phys. Rev. E 74(3), 036311 (2006) F. Jousse, R. Farr, D.R. Link, M.J. Fuerstman, P. Garstecki, Bifurcation of droplet flows within capillaries. Phys. Rev. E 74(3), 036311 (2006)
90.
Zurück zum Zitat T. Mohamed, T. Hoang, M. Jelokhani-Niaraki, P.P. Rao, Tau-derived-hexapeptide 306vqivyk311 aggregation inhibitors: nitrocatechol moiety as a pharmacophore in drug design. ACS Chem. Neurosci. 4(12), 1559–1570 (2013)CrossRef T. Mohamed, T. Hoang, M. Jelokhani-Niaraki, P.P. Rao, Tau-derived-hexapeptide 306vqivyk311 aggregation inhibitors: nitrocatechol moiety as a pharmacophore in drug design. ACS Chem. Neurosci. 4(12), 1559–1570 (2013)CrossRef
93.
Zurück zum Zitat K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef
101.
Zurück zum Zitat M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008) M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008)
105.
Zurück zum Zitat D. Sessoms, M. Belloul, W. Engl, M. Roche, L. Courbin, P. Panizza, Droplet motion in microfluidic networks: hydrodynamic interactions and pressure-drop measurements. Phys. Rev. E 80(1), 016317 (2009) D. Sessoms, M. Belloul, W. Engl, M. Roche, L. Courbin, P. Panizza, Droplet motion in microfluidic networks: hydrodynamic interactions and pressure-drop measurements. Phys. Rev. E 80(1), 016317 (2009)
106.
Zurück zum Zitat D. Sessoms, A. Amon, L. Courbin, P. Panizza, Complex dynamics of droplet traffic in a bifurcating microfluidic channel: periodicity, multistability, and selection rules. Phys. Rev. Lett. 105(15), 154501 (2010) D. Sessoms, A. Amon, L. Courbin, P. Panizza, Complex dynamics of droplet traffic in a bifurcating microfluidic channel: periodicity, multistability, and selection rules. Phys. Rev. Lett. 105(15), 154501 (2010)
108.
Zurück zum Zitat M.G. Simon, R. Lin, J.S. Fisher, A.P. Lee, A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release. Biomicrofluidics 6(1), 014110 (2012)CrossRef M.G. Simon, R. Lin, J.S. Fisher, A.P. Lee, A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release. Biomicrofluidics 6(1), 014110 (2012)CrossRef
109.
Zurück zum Zitat B.J. Smith, D.P. Gaver, III, Agent-based simulations of complex droplet pattern formation in a two-branch microfluidic network. Lab Chip 10(3), 303–312 (2010)CrossRef B.J. Smith, D.P. Gaver, III, Agent-based simulations of complex droplet pattern formation in a two-branch microfluidic network. Lab Chip 10(3), 303–312 (2010)CrossRef
110.
Zurück zum Zitat K. Song, G. Hu, X. Hu, R. Zhong, X. Wang, B. Lin, Encoding and controlling of two droplet trains in a microfluidic network with the loop-like structure. Microfluid. Nanofluid. 19(6), 1363 (2015)CrossRef K. Song, G. Hu, X. Hu, R. Zhong, X. Wang, B. Lin, Encoding and controlling of two droplet trains in a microfluidic network with the loop-like structure. Microfluid. Nanofluid. 19(6), 1363 (2015)CrossRef
122.
Zurück zum Zitat S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef
124.
Zurück zum Zitat W. Wang, C. Yang, C.M. Li, On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11), 1504–1506 (2009)CrossRef W. Wang, C. Yang, C.M. Li, On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11), 1504–1506 (2009)CrossRef
125.
Zurück zum Zitat J. Wang, V.G. Rodgers, P. Brisk, W.H. Grover, Instantaneous simulation of fluids and particles in complex microfluidic devices. PLoS One 12(12), 1–14 (2017) J. Wang, V.G. Rodgers, P. Brisk, W.H. Grover, Instantaneous simulation of fluids and particles in complex microfluidic devices. PLoS One 12(12), 1–14 (2017)
128.
Zurück zum Zitat M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)CrossRef M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)CrossRef
Metadaten
Titel
Simulating Droplet Microfluidic Networks
verfasst von
Andreas Grimmer
Robert Wille
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-20713-7_3

Neuer Inhalt