Skip to main content

2020 | OriginalPaper | Buchkapitel

Simulation Analysis of DDoS Attack in IoT Environment

verfasst von : Vikash Kumar, Vivek Kumar, Ditipriya Sinha, Ayan Kumar Das

Erschienen in: 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Now a day, Internet of Things (IoT) has touched almost every corner of human and unimaginably affect our life by its applications. Resources and environment are being more susceptible to security threats like Virus, DoS/DDoS, Ransomware, Spyware, IP Spoofing, etc. To consider security services and IoT devices capabilities, low power and processing constraints, response rate, this paper has proposed a Decision Tree-Based IDS for IoT environment to prevent intra and inter network from DoS/DDoS attacks. In this paper, the analysis is done in two ways- (a) Power consumption and (b) Attack Detection. The experiments are conducted in the Cooja simulator pre-installed in Contiki operating system within the virtual machine. From attack detection mode it is concluded that C5 Decision Tree-Based IDS model shows high accuracy with low false alarm rate (FAR). Whereas, from power consumption mode it is observed that the simulated network suffers from high-power consumption and around three times more CPU power and two-time Listening Power consumption during attack as compare to their normal behavior.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRef Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRef
2.
Zurück zum Zitat Bellavista, P., Cardone, G., Corradi, A., Foschini, L.: Convergence of MANET and WSN in IoT urban scenarios. IEEE Sens. J. 13(10), 3558–3567 (2013)CrossRef Bellavista, P., Cardone, G., Corradi, A., Foschini, L.: Convergence of MANET and WSN in IoT urban scenarios. IEEE Sens. J. 13(10), 3558–3567 (2013)CrossRef
4.
Zurück zum Zitat Loulianou, P., Vasilakis, V., Moscholios, I., Logothetis, M.: A signature-based intrusion detection system for the internet of things. In: Information and Communication Technology Form (2018) Loulianou, P., Vasilakis, V., Moscholios, I., Logothetis, M.: A signature-based intrusion detection system for the internet of things. In: Information and Communication Technology Form (2018)
5.
Zurück zum Zitat Shreenivas, D., Raza, S., Voigt, T.: Intrusion detection in the RPL-connected 6LoWPAN networks. In: Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security, pp. 31–38. ACM, April 2017 Shreenivas, D., Raza, S., Voigt, T.: Intrusion detection in the RPL-connected 6LoWPAN networks. In: Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security, pp. 31–38. ACM, April 2017
6.
Zurück zum Zitat Moustafa, N., Slay, J.: The evaluation of Network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Secur. J. A Glob. Perspect. 25(1–3), 18–31 (2016)CrossRef Moustafa, N., Slay, J.: The evaluation of Network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Secur. J. A Glob. Perspect. 25(1–3), 18–31 (2016)CrossRef
7.
Zurück zum Zitat Koroniotis, N., Moustafa, N., Sitnikova, E., Slay, J.: Towards developing network forensic mechanism for Botnet Activities in the IoT based on machine learning techniques. In: International Conference on Mobile Networks and Management, pp. 30–44. Springer, Cham (2017) Koroniotis, N., Moustafa, N., Sitnikova, E., Slay, J.: Towards developing network forensic mechanism for Botnet Activities in the IoT based on machine learning techniques. In: International Conference on Mobile Networks and Management, pp. 30–44. Springer, Cham (2017)
8.
Zurück zum Zitat Papamartzivanos, D., Mármol, F.G., Kambourakis, G.: Dendron: genetic trees driven rule induction for network intrusion detection systems. Future Gener. Comput. Syst. 79, 558–574 (2018)CrossRef Papamartzivanos, D., Mármol, F.G., Kambourakis, G.: Dendron: genetic trees driven rule induction for network intrusion detection systems. Future Gener. Comput. Syst. 79, 558–574 (2018)CrossRef
9.
Zurück zum Zitat Eastman, D., Kumar, S.A.: A simulation study to detect attacks on internet of things. In: 2017 IEEE 15th International Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence & Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 645–650. IEEE, November 2017 Eastman, D., Kumar, S.A.: A simulation study to detect attacks on internet of things. In: 2017 IEEE 15th International Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence & Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 645–650. IEEE, November 2017
11.
Zurück zum Zitat Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: Military Communications and Information Systems Conference, pp. 1–6 (2015) Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: Military Communications and Information Systems Conference, pp. 1–6 (2015)
13.
Zurück zum Zitat Diaz, A., Sanchez, P.: Simulation of attacks for security in wireless sensor network. Sensors 16(11) (2016)CrossRef Diaz, A., Sanchez, P.: Simulation of attacks for security in wireless sensor network. Sensors 16(11) (2016)CrossRef
14.
Zurück zum Zitat Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the Internet of Things. Ad Hoc Netw. 11(8), 2661–2674 (2013)CrossRef Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the Internet of Things. Ad Hoc Netw. 11(8), 2661–2674 (2013)CrossRef
15.
Zurück zum Zitat Mehare, T.M., Bhosale, S.: Design and development of intrusion detection system for internet of things. Int. J. Innovative Res. Comput. Commun. Eng. 5(7), 13469–13475 (2017) Mehare, T.M., Bhosale, S.: Design and development of intrusion detection system for internet of things. Int. J. Innovative Res. Comput. Commun. Eng. 5(7), 13469–13475 (2017)
16.
Zurück zum Zitat Kumar, V., Das, K.A., Sinha, D.: Statistical analysis of the UNSW-NB15 dataset for intrusion detection. In: 1st International Conference on Computational Intelligence in Pattern Recognition. Springer (2019, in press) Kumar, V., Das, K.A., Sinha, D.: Statistical analysis of the UNSW-NB15 dataset for intrusion detection. In: 1st International Conference on Computational Intelligence in Pattern Recognition. Springer (2019, in press)
Metadaten
Titel
Simulation Analysis of DDoS Attack in IoT Environment
verfasst von
Vikash Kumar
Vivek Kumar
Ditipriya Sinha
Ayan Kumar Das
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39875-0_8