Skip to main content
Erschienen in: Cellulose 2/2014

01.04.2014 | Original Paper

Simulation analysis of the cellulase Cel7A carbohydrate binding module on the surface of the cellulose Iβ

verfasst von: Emal M. Alekozai, Pavan K. GhattyVenkataKrishna, Edward C. Uberbacher, Michael F. Crowley, Jeremy C. Smith, Xiaolin Cheng

Erschienen in: Cellulose | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Family 7 cellobiohydrolase (Cel7A) from Trichoderma reesei consists of a carbohydrate-binding module (CBM) joined by a linker to a catalytic domain. Cellulose hydrolysis is limited by the accessibility of Cel7A to crystalline substrates, which is perceived to be primarily mediated by the CBM. Here, the binding of CBM to the cellulose Iβ fiber is characterized by combined Brownian dynamics (BD) and molecular dynamics (MD) simulations. The results confirm that CBM prefers to dock to the hydrophobic than to the hydrophilic fiber faces. Both electrostatic (ES) and van der Waals (VDW) interactions are required for achieving the observed binding preference. The VDW interactions play a more important role in stabilizing the CBM-fiber binding, whereas the ES interactions contribute through the formation of a number of hydrogen bonds between the CBM and the fiber. At long distances, an ES steering effect is also observed that tends to align the CBM in an antiparallel manner relative to the fiber axis. Furthermore, the MD results reveal hindered diffusion of the CBM on all fiber surfaces. The binding of the CBM to the hydrophobic surfaces is found to involve partial dewetting at the CBM-fiber interface coupled with local structural arrangements of the protein. The present simulation results complement and rationalize a large body of previous work and provide detailed insights into the mechanism of the CBM-cellulose fiber interactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4(1):1–17CrossRef Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4(1):1–17CrossRef
Zurück zum Zitat Barr B, Hsieh Y-L, Ganem B, Wilson D (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592CrossRef Barr B, Hsieh Y-L, Ganem B, Wilson D (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592CrossRef
Zurück zum Zitat Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert O, Bergenstråhle M, Brady JW, Adney WS, Himmel ME, Crowley MF (2010a) The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys J 99(11):3773–3781CrossRef Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert O, Bergenstråhle M, Brady JW, Adney WS, Himmel ME, Crowley MF (2010a) The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys J 99(11):3773–3781CrossRef
Zurück zum Zitat Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF (2010b) Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 114(3):1447–1453CrossRef Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF (2010b) Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 114(3):1447–1453CrossRef
Zurück zum Zitat Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 22(2):231–238CrossRef Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 22(2):231–238CrossRef
Zurück zum Zitat Berne BJ, Weeks JD, Zhou R (2009) Dewetting and hydrophobic interaction in physical and biological systems. Phys Chem 60(1):85CrossRef Berne BJ, Weeks JD, Zhou R (2009) Dewetting and hydrophobic interaction in physical and biological systems. Phys Chem 60(1):85CrossRef
Zurück zum Zitat Boraston AB (2005) The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochem J 385(Pt 2):479 Boraston AB (2005) The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochem J 385(Pt 2):479
Zurück zum Zitat Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382(Pt 3):769 Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382(Pt 3):769
Zurück zum Zitat Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131:124101CrossRef Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131:124101CrossRef
Zurück zum Zitat Bremaud P (1999) Markov chains: Gibbs fields Monte Carlo simulation and queues. Springer, Berlin CrossRef Bremaud P (1999) Markov chains: Gibbs fields Monte Carlo simulation and queues. Springer, Berlin CrossRef
Zurück zum Zitat Breyer WA, Matthews BW (2001) A structural basis for processivity. Protein Sci 10(9):1699–1711CrossRef Breyer WA, Matthews BW (2001) A structural basis for processivity. Protein Sci 10(9):1699–1711CrossRef
Zurück zum Zitat Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR (2009) The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 113(31):10994–11002CrossRef Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR (2009) The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 113(31):10994–11002CrossRef
Zurück zum Zitat Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci 108(25):10184CrossRef Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci 108(25):10184CrossRef
Zurück zum Zitat Carrard G, Koivula A, Söderlund H, Béguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97(19):10342–10347CrossRef Carrard G, Koivula A, Söderlund H, Béguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97(19):10342–10347CrossRef
Zurück zum Zitat Chandra RP, Esteghlalian AR, Saddler JN (2009) Assessing substrate accessibility to enzymatic hydrolysis by cellulases. Characterization of Lignocellulosic Materials: 60–80 Chandra RP, Esteghlalian AR, Saddler JN (2009) Assessing substrate accessibility to enzymatic hydrolysis by cellulases. Characterization of Lignocellulosic Materials: 60–80
Zurück zum Zitat Coutinho J, Gilkes N, Kilburn D, Warren R, Miller R Jr (1993) The nature of the cellulose-binding domain effects the activities of a bacterial endoglucanase on different forms of cellulose. FEMS Microbiol Lett 113(2):211–217CrossRef Coutinho J, Gilkes N, Kilburn D, Warren R, Miller R Jr (1993) The nature of the cellulose-binding domain effects the activities of a bacterial endoglucanase on different forms of cellulose. FEMS Microbiol Lett 113(2):211–217CrossRef
Zurück zum Zitat Creagh AL, Ong E, Jervis E, Kilburn DG, Haynes CA (1996) Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci USA 93(22):12229–12234CrossRef Creagh AL, Ong E, Jervis E, Kilburn DG, Haynes CA (1996) Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci USA 93(22):12229–12234CrossRef
Zurück zum Zitat Dagel DJ, Liu YS, Zhong L, Luo Y, Himmel ME, Xu Q, Zeng Y, Ding SY, Smith S (2010) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641CrossRef Dagel DJ, Liu YS, Zhong L, Luo Y, Himmel ME, Xu Q, Zeng Y, Ding SY, Smith S (2010) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641CrossRef
Zurück zum Zitat Daidone I, Ulmschneider MB, Di Nola A, Amadei A, Smith JC (2007) Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding. Proc Natl Acad Sci USA 104(39):15230CrossRef Daidone I, Ulmschneider MB, Di Nola A, Amadei A, Smith JC (2007) Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding. Proc Natl Acad Sci USA 104(39):15230CrossRef
Zurück zum Zitat Dill KA, Truskett TM, Vlachy V, Hribar-Lee B (2005) Modeling water, the hydrophobic effect, and ion solvation. Annu Rev Biophys Biomol Struct 34:173–199CrossRef Dill KA, Truskett TM, Vlachy V, Hribar-Lee B (2005) Modeling water, the hydrophobic effect, and ion solvation. Annu Rev Biophys Biomol Struct 34:173–199CrossRef
Zurück zum Zitat Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16(3):273–284CrossRef Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16(3):273–284CrossRef
Zurück zum Zitat Elcock AH (2004) Molecular simulations of diffusion and association in multimacromolecular systems. Methods Enzymol 383:166–198CrossRef Elcock AH (2004) Molecular simulations of diffusion and association in multimacromolecular systems. Methods Enzymol 383:166–198CrossRef
Zurück zum Zitat Elmer SP, Park S, Pande VS (2005) Foldamer dynamics expressed via Markov state models. I. Explicit solvent molecular-dynamics simulations in acetonitrile, chloroform, methanol, and water. J Chem Phys 123:114902CrossRef Elmer SP, Park S, Pande VS (2005) Foldamer dynamics expressed via Markov state models. I. Explicit solvent molecular-dynamics simulations in acetonitrile, chloroform, methanol, and water. J Chem Phys 123:114902CrossRef
Zurück zum Zitat Ermak DL, McCammon J (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352CrossRef Ermak DL, McCammon J (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352CrossRef
Zurück zum Zitat Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296CrossRef Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296CrossRef
Zurück zum Zitat Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613CrossRef Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613CrossRef
Zurück zum Zitat Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang Z-Y (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci 108(9):3803–3808CrossRef Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang Z-Y (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci 108(9):3803–3808CrossRef
Zurück zum Zitat Gabdoulline R, Wade R (1996) Effective charges for macromolecules in solvent. J Phys Chem 100(9):3868–3878CrossRef Gabdoulline R, Wade R (1996) Effective charges for macromolecules in solvent. J Phys Chem 100(9):3868–3878CrossRef
Zurück zum Zitat Gabdoulline R, Wade RC (1998) Brownian dynamics simulation of protein–protein diffusional encounter. Methods 14(3):329–341CrossRef Gabdoulline R, Wade RC (1998) Brownian dynamics simulation of protein–protein diffusional encounter. Methods 14(3):329–341CrossRef
Zurück zum Zitat Gilkes N, Henrissat B, Kilburn D, Miller R Jr, Warren R (1991) Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Mol Biol Rev 55(2):303 Gilkes N, Henrissat B, Kilburn D, Miller R Jr, Warren R (1991) Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Mol Biol Rev 55(2):303
Zurück zum Zitat Guillén D, Sánchez S, Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85(5):1241–1249CrossRef Guillén D, Sánchez S, Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85(5):1241–1249CrossRef
Zurück zum Zitat Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29(15):2543–2564CrossRef Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29(15):2543–2564CrossRef
Zurück zum Zitat Guvench O, Hatcher ER, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5(9):2353–2370CrossRef Guvench O, Hatcher ER, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5(9):2353–2370CrossRef
Zurück zum Zitat Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256(1):119–127CrossRef Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256(1):119–127CrossRef
Zurück zum Zitat Hashimoto H (2006) Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci 63(24):2954–2967CrossRef Hashimoto H (2006) Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci 63(24):2954–2967CrossRef
Zurück zum Zitat Hefford MA, Laderoute K, Willick GE, Yaguchi M, Seligy VL (1992) Bipartite organization of the Bacillus subtilis endo-beta-1, 4-glucanase revealed by C-terminal mutations. Protein Eng Des Sel 5(5):433CrossRef Hefford MA, Laderoute K, Willick GE, Yaguchi M, Seligy VL (1992) Bipartite organization of the Bacillus subtilis endo-beta-1, 4-glucanase revealed by C-terminal mutations. Protein Eng Des Sel 5(5):433CrossRef
Zurück zum Zitat Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci 107(34):15293–15298CrossRef Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci 107(34):15293–15298CrossRef
Zurück zum Zitat Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804CrossRef Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804CrossRef
Zurück zum Zitat Hinrichs NS, Pande VS (2007) Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. J Chem Phys 126:244101CrossRef Hinrichs NS, Pande VS (2007) Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. J Chem Phys 126:244101CrossRef
Zurück zum Zitat Hoffrén AM, Teeri TT, Teleman O (1995) Molecular dynamics simulation of fungal cellulose-binding domains: differences in molecular rigidity but a preserved cellulose binding surface. Protein Eng 8(5):443–450CrossRef Hoffrén AM, Teeri TT, Teleman O (1995) Molecular dynamics simulation of fungal cellulose-binding domains: differences in molecular rigidity but a preserved cellulose binding surface. Protein Eng 8(5):443–450CrossRef
Zurück zum Zitat Holtzapple M (1993) Cellulose. In: Macrae R, Robinson RK, Saddler MJ (eds) Encyclopedia of food science food technology and nutrition. Academic Press, London 16: 758–767 Holtzapple M (1993) Cellulose. In: Macrae R, Robinson RK, Saddler MJ (eds) Encyclopedia of food science food technology and nutrition. Academic Press, London 16: 758–767
Zurück zum Zitat Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186CrossRef Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186CrossRef
Zurück zum Zitat Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272(38):24016CrossRef Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272(38):24016CrossRef
Zurück zum Zitat Johansson G, Ståhlberg J, Lindeberg G, Engström Å, Pettersson G (1989) Isolated fungal cellulose terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett 243(2):389–393CrossRef Johansson G, Ståhlberg J, Lindeberg G, Engström Å, Pettersson G (1989) Isolated fungal cellulose terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett 243(2):389–393CrossRef
Zurück zum Zitat Jorgensen WL (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79 (2) Jorgensen WL (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79 (2)
Zurück zum Zitat Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652CrossRef Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652CrossRef
Zurück zum Zitat Kataeva I, Guglielmi G, Béguin P (1997) Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein CipA: stoichiometry and cellulolytic activity of the complexes. Biochem J 326(Pt 2):617–624 Kataeva I, Guglielmi G, Béguin P (1997) Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein CipA: stoichiometry and cellulolytic activity of the complexes. Biochem J 326(Pt 2):617–624
Zurück zum Zitat Kipper K, Väljamäe P, Johansson G (2005) Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’kinetics on fluorescent polymeric model substrates. Biochem J 385(Pt 2):527 Kipper K, Väljamäe P, Johansson G (2005) Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’kinetics on fluorescent polymeric model substrates. Biochem J 385(Pt 2):527
Zurück zum Zitat Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28(18):7241–7257CrossRef Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28(18):7241–7257CrossRef
Zurück zum Zitat Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489CrossRef Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489CrossRef
Zurück zum Zitat Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286(13):11195CrossRef Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286(13):11195CrossRef
Zurück zum Zitat Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRef Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRef
Zurück zum Zitat MacKerell AD, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265CrossRef MacKerell AD, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265CrossRef
Zurück zum Zitat McGuffee SR, Elcock AH (2006) Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems. J Am Chem Soc 128(37):12098–12110CrossRef McGuffee SR, Elcock AH (2006) Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems. J Am Chem Soc 128(37):12098–12110CrossRef
Zurück zum Zitat McGuffee SR, Elcock AH (2010) Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput Biol 6:e1000694CrossRef McGuffee SR, Elcock AH (2010) Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput Biol 6:e1000694CrossRef
Zurück zum Zitat Meister JJ (2000) Polymer modification: principles, techniques, and applications. CRC Press, Boca Raton Meister JJ (2000) Polymer modification: principles, techniques, and applications. CRC Press, Boca Raton
Zurück zum Zitat Mereghetti P, Wade RC (2011) Diffusion of hydrophobin proteins in solution and interactions with a graphite surface. BMC Biophys 4:9CrossRef Mereghetti P, Wade RC (2011) Diffusion of hydrophobin proteins in solution and interactions with a graphite surface. BMC Biophys 4:9CrossRef
Zurück zum Zitat Mereghetti P, Gabdoulline RR, Wade RC (2010) Brownian dynamics simulation of protein solutions: structural and dynamical properties. Biophys J 99(11):3782–3791CrossRef Mereghetti P, Gabdoulline RR, Wade RC (2010) Brownian dynamics simulation of protein solutions: structural and dynamical properties. Biophys J 99(11):3782–3791CrossRef
Zurück zum Zitat Mulakala C, Reilly PJ (2005) Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: a docking study. Proteins 60(4):598–605CrossRef Mulakala C, Reilly PJ (2005) Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: a docking study. Proteins 60(4):598–605CrossRef
Zurück zum Zitat Nagy T, Simpson P, Williamson MP, Hazlewood GP, Gilbert HJ, Orosz L (1998) All three surface tryptophans in Type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Lett 429(3):312–316CrossRef Nagy T, Simpson P, Williamson MP, Hazlewood GP, Gilbert HJ, Orosz L (1998) All three surface tryptophans in Type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Lett 429(3):312–316CrossRef
Zurück zum Zitat Neusius T, Daidone I, Sokolov IM, Smith JC (2008) Subdiffusion in peptides originates from the fractal-like structure of configuration space. Phys Rev Lett 100(18):188103CrossRef Neusius T, Daidone I, Sokolov IM, Smith JC (2008) Subdiffusion in peptides originates from the fractal-like structure of configuration space. Phys Rev Lett 100(18):188103CrossRef
Zurück zum Zitat Neusius T, Sokolov IM, Smith JC (2009) Subdiffusion in time-averaged, confined random walks. Phys Rev E 80(1):011109CrossRef Neusius T, Sokolov IM, Smith JC (2009) Subdiffusion in time-averaged, confined random walks. Phys Rev E 80(1):011109CrossRef
Zurück zum Zitat Neusius T, Daidone I, Sokolov IM, Smith JC (2011) Configurational subdiffusion of peptides: a network study. Phys Rev E 83(2):021902CrossRef Neusius T, Daidone I, Sokolov IM, Smith JC (2011) Configurational subdiffusion of peptides: a network study. Phys Rev E 83(2):021902CrossRef
Zurück zum Zitat Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME (2007) Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel 20(4):179CrossRef Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME (2007) Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel 20(4):179CrossRef
Zurück zum Zitat Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF (2012) Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem 287(24):20603–20612CrossRef Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF (2012) Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem 287(24):20603–20612CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
Zurück zum Zitat Nutt A, Sild V, Pettersson G, Johansson G (1998) Progress curves. Eur J Biochem 258(1):200–206CrossRef Nutt A, Sild V, Pettersson G, Johansson G (1998) Progress curves. Eur J Biochem 258(1):200–206CrossRef
Zurück zum Zitat Pettersson GÖR, Linder M, Reinikainen T, Drakenberg T, Mattinen ML, Annila A, Kontteli M, Lindeberg G, Ståhlberg J (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci 4(6):1056–1064CrossRef Pettersson GÖR, Linder M, Reinikainen T, Drakenberg T, Mattinen ML, Annila A, Kontteli M, Lindeberg G, Ståhlberg J (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci 4(6):1056–1064CrossRef
Zurück zum Zitat Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781CrossRef Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781CrossRef
Zurück zum Zitat Pratt LR (2002) Molecular theory of hydrophobic effects: “She is too mean to have her name repeated.”. Annu Rev Phys Chem 53:409–436CrossRef Pratt LR (2002) Molecular theory of hydrophobic effects: “She is too mean to have her name repeated.”. Annu Rev Phys Chem 53:409–436CrossRef
Zurück zum Zitat R Development Core Team (2010) R: A Language and Environment for Statistical Computing. Austria, Vienna R Development Core Team (2010) R: A Language and Environment for Statistical Computing. Austria, Vienna
Zurück zum Zitat Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRef Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRef
Zurück zum Zitat Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu Rev Phys Chem 59:713–740CrossRef Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu Rev Phys Chem 59:713–740CrossRef
Zurück zum Zitat Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14(4):475–482CrossRef Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14(4):475–482CrossRef
Zurück zum Zitat Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins: Struct Funct Bioinform 22(4):392–403CrossRef Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins: Struct Funct Bioinform 22(4):392–403CrossRef
Zurück zum Zitat Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24(7):777–784CrossRef Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24(7):777–784CrossRef
Zurück zum Zitat Senn H, Thiel W (2007a) QM/MM methods for biological systems. Top Curr Chem 268:173–290CrossRef Senn H, Thiel W (2007a) QM/MM methods for biological systems. Top Curr Chem 268:173–290CrossRef
Zurück zum Zitat Senn HM, Thiel W (2007b) QM/MM studies of enzymes. Curr Opin Chem Biol 11(2):182–187CrossRef Senn HM, Thiel W (2007b) QM/MM studies of enzymes. Curr Opin Chem Biol 11(2):182–187CrossRef
Zurück zum Zitat Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229CrossRef Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229CrossRef
Zurück zum Zitat Singhal N, Pande VS (2005) Error analysis and efficient sampling in Markovian state models for molecular dynamics. J Chem Phys 123(20):204909CrossRef Singhal N, Pande VS (2005) Error analysis and efficient sampling in Markovian state models for molecular dynamics. J Chem Phys 123(20):204909CrossRef
Zurück zum Zitat Srisodsuk M, Reinikainen T, Penttilä M, Teeri TT (1993) Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J Biol Chem 268(28):20756–20761 Srisodsuk M, Reinikainen T, Penttilä M, Teeri TT (1993) Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J Biol Chem 268(28):20756–20761
Zurück zum Zitat Srisodsuk M, Lehtiö J, Linder M, Margolles-Clark E, Reinikainen T, Teeri TT (1997) Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose. J Biotechnol 57(1–3):49–57CrossRef Srisodsuk M, Lehtiö J, Linder M, Margolles-Clark E, Reinikainen T, Teeri TT (1997) Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose. J Biotechnol 57(1–3):49–57CrossRef
Zurück zum Zitat Ståhlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157(1):107–113CrossRef Ståhlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157(1):107–113CrossRef
Zurück zum Zitat Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef
Zurück zum Zitat Swope WC, Pitera JW, Suits F (2004) Describing protein folding kinetics by molecular dynamics simulations. 1. Theory. J Phys Chem B 108(21):6571–6581CrossRef Swope WC, Pitera JW, Suits F (2004) Describing protein folding kinetics by molecular dynamics simulations. 1. Theory. J Phys Chem B 108(21):6571–6581CrossRef
Zurück zum Zitat Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15(5):160–167CrossRef Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15(5):160–167CrossRef
Zurück zum Zitat Tomme P, Tilbeurgh H, Pettersson G, Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur J Biochem 170(3):575–581CrossRef Tomme P, Tilbeurgh H, Pettersson G, Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur J Biochem 170(3):575–581CrossRef
Zurück zum Zitat Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739 Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739
Zurück zum Zitat Van Oss C, Absolom D, Neumann A (1980) The “hydrophobic effect”: essentially a van der Waals interaction. Colloid Polym Sci 258(4):424–427CrossRef Van Oss C, Absolom D, Neumann A (1980) The “hydrophobic effect”: essentially a van der Waals interaction. Colloid Polym Sci 258(4):424–427CrossRef
Zurück zum Zitat Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of functional domains. FEBS Lett 204(2):223–227CrossRef Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of functional domains. FEBS Lett 204(2):223–227CrossRef
Zurück zum Zitat Vrsanská M, Biely P (1992) The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydr Res 227:19–27CrossRef Vrsanská M, Biely P (1992) The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydr Res 227:19–27CrossRef
Zurück zum Zitat Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249CrossRef Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249CrossRef
Zurück zum Zitat Wohlert J, Berglund LA (2011) A coarse-grained model for molecular dynamics simulations of native cellulose. J Chem Theory Comput Wohlert J, Berglund LA (2011) A coarse-grained model for molecular dynamics simulations of native cellulose. J Chem Theory Comput
Zurück zum Zitat Yaminsky VV, Vogler EA (2001) Hydrophobic hydration. Curr Opin Colloid Interface Sci 6(4):342–349CrossRef Yaminsky VV, Vogler EA (2001) Hydrophobic hydration. Curr Opin Colloid Interface Sci 6(4):342–349CrossRef
Zurück zum Zitat Yui T, Shiiba H, Tsutsumi Y, Hayashi S, Miyata T, Hirata F (2010) Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Iα crystal model. J Phys Chem B 114(1):49–58CrossRef Yui T, Shiiba H, Tsutsumi Y, Hayashi S, Miyata T, Hirata F (2010) Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Iα crystal model. J Phys Chem B 114(1):49–58CrossRef
Zurück zum Zitat Zhao X, Rignall TR, McCabe C, Adney WS, Himmel ME (2008) Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization. Chem Phys Lett 460(1–3):284–288CrossRef Zhao X, Rignall TR, McCabe C, Adney WS, Himmel ME (2008) Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization. Chem Phys Lett 460(1–3):284–288CrossRef
Zurück zum Zitat Zhong L, Matthews JF, Crowley MF, Rignall T, Talón C, Cleary JM, Walker RC, Chukkapalli G, McCabe C, Nimlos MR (2008) Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ. Cellulose 15(2):261–273CrossRef Zhong L, Matthews JF, Crowley MF, Rignall T, Talón C, Cleary JM, Walker RC, Chukkapalli G, McCabe C, Nimlos MR (2008) Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ. Cellulose 15(2):261–273CrossRef
Zurück zum Zitat Zhou R, Huang X, Margulis CJ, Berne BJ (2004) Hydrophobic collapse in multidomain protein folding. Science 305(5690):1605–1609CrossRef Zhou R, Huang X, Margulis CJ, Berne BJ (2004) Hydrophobic collapse in multidomain protein folding. Science 305(5690):1605–1609CrossRef
Metadaten
Titel
Simulation analysis of the cellulase Cel7A carbohydrate binding module on the surface of the cellulose Iβ
verfasst von
Emal M. Alekozai
Pavan K. GhattyVenkataKrishna
Edward C. Uberbacher
Michael F. Crowley
Jeremy C. Smith
Xiaolin Cheng
Publikationsdatum
01.04.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0026-0

Weitere Artikel der Ausgabe 2/2014

Cellulose 2/2014 Zur Ausgabe