Skip to main content
Erschienen in: Microsystem Technologies 8/2018

10.02.2018 | Technical Paper

Simulation and verification of polydimethylsiloxane (PDMS) channels on acoustic microfluidic devices

verfasst von: Scott Padilla, Emre Tufekcioglu, Rasim Guldiken

Erschienen in: Microsystem Technologies | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polydimethylsiloxane (PDMS) is widely used as a channel material in microfluidic applications. Due to its highly elastomeric characteristics, PDMS absorbs the acoustic energy of the surface acoustic waves (SAWs) generated by the interdigital transducers (IDTs). Insertion loss is one of the indicators that present the degree of attenuation caused by the PDMS channels for SAW devices. In this paper, we investigate the effect of PDMS channel side wall thickness on insertion loss via ANSYS® Finite Element (FE) Modelling software (ANSYS Inc., Canonsburg, PA). The 3-Dimensional simulation study was carried out in two main steps; first, a calibration step of bare 128° YX-cut lithium niobate LiNbO3 for obtaining the boundary conditions and second, with the PDMS channels constructed on top of the substrate. The PDMS channel side wall thickness was varied between 2 and 8 mm and the results were compared with experimental results of a prior study. The results illustrate that insertion loss is increased as the PDMS side wall thickness is increased highlighting the need to minimize the PDMS side wall thickness in the design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdollahi A, Jiang Z, Arabshahi SA (2007a) Boundary conditions for simulating large SAW devices using ANSYS. IEEE Trans Ultrason Ferroelectr Freq Control 54(12):2446–2455CrossRef Abdollahi A, Jiang Z, Arabshahi SA (2007a) Boundary conditions for simulating large SAW devices using ANSYS. IEEE Trans Ultrason Ferroelectr Freq Control 54(12):2446–2455CrossRef
Zurück zum Zitat Abdollahi A, Jiang Z, Arabshahi SA (2007b) Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis. IEEE Trans Ultrason Ferroelectr Freq Control 54(12):2446–2454CrossRef Abdollahi A, Jiang Z, Arabshahi SA (2007b) Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis. IEEE Trans Ultrason Ferroelectr Freq Control 54(12):2446–2454CrossRef
Zurück zum Zitat ANSYS Inc. (2013) PDF documentation for release 15.0, ANSYS element reference, Canonsburg ANSYS Inc. (2013) PDF documentation for release 15.0, ANSYS element reference, Canonsburg
Zurück zum Zitat Atashbar MZ, Bazuin BJ, Simpeh M, Krishnamurthy S (2005) 3D FE simulation of H2 SAW gas sensor. Sensor Actuat B-Chem 111–112:213–218CrossRef Atashbar MZ, Bazuin BJ, Simpeh M, Krishnamurthy S (2005) 3D FE simulation of H2 SAW gas sensor. Sensor Actuat B-Chem 111–112:213–218CrossRef
Zurück zum Zitat Auld BA (1973) Acoustic fields and waves in solids, vols 1–2. Wiley, New York Auld BA (1973) Acoustic fields and waves in solids, vols 1–2. Wiley, New York
Zurück zum Zitat Campbell C (1998) Surface acoustic wave devices for mobile and wireless communications. Academic Press Inc., London, p 81 Campbell C (1998) Surface acoustic wave devices for mobile and wireless communications. Academic Press Inc., London, p 81
Zurück zum Zitat Chou C-H, Khuri-Yakub BT, Kino GS (1988) Lens design for acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control 35(4):464–469CrossRef Chou C-H, Khuri-Yakub BT, Kino GS (1988) Lens design for acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control 35(4):464–469CrossRef
Zurück zum Zitat Crane NB, Onen O, Carballo J, Ni Q, Guldiken R (2013) Fluidic assembly at the microscale: progress and prospects. Microfluid Nanofluid 14:383–419CrossRef Crane NB, Onen O, Carballo J, Ni Q, Guldiken R (2013) Fluidic assembly at the microscale: progress and prospects. Microfluid Nanofluid 14:383–419CrossRef
Zurück zum Zitat Deguchi S, Hotta J, Yokoyama S, Matsui TS (2015) Viscoelastic and optical properties of four different PDMS polymers. J Micromech Microeng 25(9):097002CrossRef Deguchi S, Hotta J, Yokoyama S, Matsui TS (2015) Viscoelastic and optical properties of four different PDMS polymers. J Micromech Microeng 25(9):097002CrossRef
Zurück zum Zitat Fall D, Duquennoy M, Ouaftouh M, Piwakowski B, Jenot F (2015) Modelling based on spatial impulse response model for optimization of inter digital transducers (SAW sensors) for non destructive testing. Phys Proc 70:927–931CrossRef Fall D, Duquennoy M, Ouaftouh M, Piwakowski B, Jenot F (2015) Modelling based on spatial impulse response model for optimization of inter digital transducers (SAW sensors) for non destructive testing. Phys Proc 70:927–931CrossRef
Zurück zum Zitat Finger N, Kovacs G, Schoberl J, Langer U (2003) Accurate FEM/BEM-simulation of surface acoustic wave filters. IEEE Symp Ultrason 2:1680–1685 Finger N, Kovacs G, Schoberl J, Langer U (2003) Accurate FEM/BEM-simulation of surface acoustic wave filters. IEEE Symp Ultrason 2:1680–1685
Zurück zum Zitat Gowini MME, Moussa WA (2010) A finite element model of a MEMS-based surface acoustic wave hydrogen sensor. Sensors 10:1232–1250CrossRef Gowini MME, Moussa WA (2010) A finite element model of a MEMS-based surface acoustic wave hydrogen sensor. Sensors 10:1232–1250CrossRef
Zurück zum Zitat Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J (2012) Sheathless Size-Based Acoustic Particle Separation. Sensors 12:905–922CrossRef Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J (2012) Sheathless Size-Based Acoustic Particle Separation. Sensors 12:905–922CrossRef
Zurück zum Zitat Hashimoto K.-Y, Yamaguchi M (1991) Boundary element method analysis of surface acoustic wave devices. In: Breazeale MA, Leroy O (eds) Physical acoustics: fundamentals and applications. Springer, Boston, p 353–358 Hashimoto K.-Y, Yamaguchi M (1991) Boundary element method analysis of surface acoustic wave devices. In: Breazeale MA, Leroy O (eds) Physical acoustics: fundamentals and applications. Springer, Boston, p 353–358
Zurück zum Zitat Ippolito SJ, Kalantar-Zadeh K, Powell DA, Wlodarski W (2003) A 3-dimensional approach for simulating acoustic wave propagation in layered SAW devices. In: Proceedings of IEEE ultrasonics symposium. Honolulu, p 303–306 Ippolito SJ, Kalantar-Zadeh K, Powell DA, Wlodarski W (2003) A 3-dimensional approach for simulating acoustic wave propagation in layered SAW devices. In: Proceedings of IEEE ultrasonics symposium. Honolulu, p 303–306
Zurück zum Zitat Jo MC, Guldiken R (2012) Active density-based separation using standing surface acoustic waves. Sensor Actuat A-Phys 187:22–28CrossRef Jo MC, Guldiken R (2012) Active density-based separation using standing surface acoustic waves. Sensor Actuat A-Phys 187:22–28CrossRef
Zurück zum Zitat Jo MC, Guldiken R (2013) Dual surface acoustic wave-based active mixing in a microfluidic channel. Sensor Actuat A-Phys 196:1–7CrossRef Jo MC, Guldiken R (2013) Dual surface acoustic wave-based active mixing in a microfluidic channel. Sensor Actuat A-Phys 196:1–7CrossRef
Zurück zum Zitat Jo MC, Guldiken R (2014a) Effects of polydimethylsiloxane (PDMS) microchannels on surface acoustic wave-based microfluidic devices. Microelectron Eng 113:98–104CrossRef Jo MC, Guldiken R (2014a) Effects of polydimethylsiloxane (PDMS) microchannels on surface acoustic wave-based microfluidic devices. Microelectron Eng 113:98–104CrossRef
Zurück zum Zitat Jo M, Guldiken R (2014b) Particle manipulation by phase-shifting of surface acoustic waves. Sensor Actuat A-Phys 207:39–42CrossRef Jo M, Guldiken R (2014b) Particle manipulation by phase-shifting of surface acoustic waves. Sensor Actuat A-Phys 207:39–42CrossRef
Zurück zum Zitat Johnston ID, McCluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J Micromech Microeng 24:035017CrossRef Johnston ID, McCluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J Micromech Microeng 24:035017CrossRef
Zurück zum Zitat Kabir KMM, Matthews GI, Sabri YM, Russo SP, Ippolito SJ, Bhargava SK (2016) Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device. Smart Mater Struct 25:035040CrossRef Kabir KMM, Matthews GI, Sabri YM, Russo SP, Ippolito SJ, Bhargava SK (2016) Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device. Smart Mater Struct 25:035040CrossRef
Zurück zum Zitat Newnham RE (2005) Properties of materials, 1st edn. Oxford University Press Inc., New York, p 266–270 Newnham RE (2005) Properties of materials, 1st edn. Oxford University Press Inc., New York, p 266–270
Zurück zum Zitat Onen O, Sisman A, Gallant N, Kruk P, Guldiken R (2012) Urinary Bcl-2 surface acoustic wave biosensor for early ovarian cancer detection. Sensors 12:7423–7437CrossRef Onen O, Sisman A, Gallant N, Kruk P, Guldiken R (2012) Urinary Bcl-2 surface acoustic wave biosensor for early ovarian cancer detection. Sensors 12:7423–7437CrossRef
Zurück zum Zitat Peng D, Yu FA (2009) Novel FEA simulation model for RFID SAW tag. IEEE T Ultrason Ferr 56(8):1753–1760CrossRef Peng D, Yu FA (2009) Novel FEA simulation model for RFID SAW tag. IEEE T Ultrason Ferr 56(8):1753–1760CrossRef
Zurück zum Zitat Peng D, Yu F, Hu J, Li P (2010) Boundary Conditions for Simulating Large SAW Devices Using ANSYS. IEEE Trans Ultrason Ferroelectr Freq Control 57(8):1712–1714CrossRef Peng D, Yu F, Hu J, Li P (2010) Boundary Conditions for Simulating Large SAW Devices Using ANSYS. IEEE Trans Ultrason Ferroelectr Freq Control 57(8):1712–1714CrossRef
Zurück zum Zitat Stevenson AC, Mehta MH, Sethi RS, Cheran L-E, Thompson M, Davies I, Lowe CR (2001) Gigahertz surface acoustic wave probe for chemical analysis. Analyst 126:1619–1624CrossRef Stevenson AC, Mehta MH, Sethi RS, Cheran L-E, Thompson M, Davies I, Lowe CR (2001) Gigahertz surface acoustic wave probe for chemical analysis. Analyst 126:1619–1624CrossRef
Zurück zum Zitat Tancrell RH, Holland MG (1971) Acoustic wave filters. Proc IEEE 59(3):393–409CrossRef Tancrell RH, Holland MG (1971) Acoustic wave filters. Proc IEEE 59(3):393–409CrossRef
Zurück zum Zitat Tikka AC, Al-Sarawi SF, Abbott D (2008) Finite element analysis of a 3-dimensional acoustic wave correlator response for variable acoustic modes. Proc. SPIE 6926, modeling, signal processing, and control for smart structures, 692603 Tikka AC, Al-Sarawi SF, Abbott D (2008) Finite element analysis of a 3-dimensional acoustic wave correlator response for variable acoustic modes. Proc. SPIE 6926, modeling, signal processing, and control for smart structures, 692603
Zurück zum Zitat Ventura P, Hode JM, Solal M, Desbois J, Ribbe J (1998) Numerical methods for SAW propagation characterization. IEEE Symp Ultrason 1:175–186 Ventura P, Hode JM, Solal M, Desbois J, Ribbe J (1998) Numerical methods for SAW propagation characterization. IEEE Symp Ultrason 1:175–186
Zurück zum Zitat Wang T, Green R, Nair RR, Howell M, Mohapatra S, Guldiken R, Mohapatra SS (2015) Surface acoustic waves (SAW)-based biosensing for quantification of cell growth in 2D and 3D cultures. Sensors 15:32045–32055CrossRef Wang T, Green R, Nair RR, Howell M, Mohapatra S, Guldiken R, Mohapatra SS (2015) Surface acoustic waves (SAW)-based biosensing for quantification of cell growth in 2D and 3D cultures. Sensors 15:32045–32055CrossRef
Zurück zum Zitat Wang T, Ni Q, Crane N, Guldiken R (2017) Surface acoustic wave based pumping in a microchannel. Microsyst Technol 23(5):1335–1342CrossRef Wang T, Ni Q, Crane N, Guldiken R (2017) Surface acoustic wave based pumping in a microchannel. Microsyst Technol 23(5):1335–1342CrossRef
Zurück zum Zitat Wohltjen H, Dessy R (1979) Surface acoustic wave probe for chemical analysis. I. introduction and instrument description. Anal Chem 51(9):1458–1464CrossRef Wohltjen H, Dessy R (1979) Surface acoustic wave probe for chemical analysis. I. introduction and instrument description. Anal Chem 51(9):1458–1464CrossRef
Zurück zum Zitat Wong K-Y, Tam W-Y (2015) Analysis of the frequency response of SAW filters using finite-difference time-domain method. IEEE Trans Ultrason Ferroelectr Freq Control 53(11):3364–3370 Wong K-Y, Tam W-Y (2015) Analysis of the frequency response of SAW filters using finite-difference time-domain method. IEEE Trans Ultrason Ferroelectr Freq Control 53(11):3364–3370
Zurück zum Zitat Xu G (2000) Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter. Smart Mater Struct 9:973–980CrossRef Xu G (2000) Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter. Smart Mater Struct 9:973–980CrossRef
Zurück zum Zitat Xu G, Jiang Q (2001) A finite element analysis of second order effects on the frequency response of a SAW device. J Intel Mat Syst Str 12:69–77CrossRef Xu G, Jiang Q (2001) A finite element analysis of second order effects on the frequency response of a SAW device. J Intel Mat Syst Str 12:69–77CrossRef
Zurück zum Zitat Zhang G (2009) Nanostructure-enhanced surface acoustic waves biosensor and its computational modeling. J Sens 2009:1–11 Zhang G (2009) Nanostructure-enhanced surface acoustic waves biosensor and its computational modeling. J Sens 2009:1–11
Metadaten
Titel
Simulation and verification of polydimethylsiloxane (PDMS) channels on acoustic microfluidic devices
verfasst von
Scott Padilla
Emre Tufekcioglu
Rasim Guldiken
Publikationsdatum
10.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3760-2

Weitere Artikel der Ausgabe 8/2018

Microsystem Technologies 8/2018 Zur Ausgabe

Neuer Inhalt