Skip to main content
Erschienen in: Progress in Additive Manufacturing 3/2020

10.04.2020 | Full Research Article

Simulation-assisted analysis of microstructural evolution of Ti–6Al–4V during laser powder bed fusion

verfasst von: Peter Holfelder, Armin Witte

Erschienen in: Progress in Additive Manufacturing | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A combination of a Multi-Phase Field model and an Orientation Field is proposed to describe the microstructure evolution induced by laser–material interaction in Laser Powder Bed Fusion (LPBF). The relevant phase transformations are covered by nucleation and growth processes driven by free enthalpy. An empiric correction is applied to the phase-field approach to reduce the grid resolution required for the numerical simulation. This contribution focuses on the LPBF processing of the titanium alloy Ti–6Al–4V. Particularly, the transition between \(\upbeta\)-titanium and melt is emphasized. The results are discussed and compared to measurements. A numerical correction can be applied to the MPF model to avoid a mesh introduct anisotopy in the crystal growth. The simulation shows the \(\upbeta\)-phase crystal growth with the (1 0 0) direction into the melt. The model for the phase transformation from \(\upbeta\)-phase to \(\upalpha\)-phase agrees with the XRD measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hooper PA (2018) Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf 39:548–559 Hooper PA (2018) Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf 39:548–559
2.
Zurück zum Zitat Shiomi M, Yoshidome A, Abe F, Osakada K (1999) Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders. Int J Mach Tool Manuf 39:237–252CrossRef Shiomi M, Yoshidome A, Abe F, Osakada K (1999) Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders. Int J Mach Tool Manuf 39:237–252CrossRef
3.
Zurück zum Zitat Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79CrossRef Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79CrossRef
4.
Zurück zum Zitat Roberts I, Wang C, Esterlein R, Stanford M, Mynors D (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tool Manuf 19:916–923CrossRef Roberts I, Wang C, Esterlein R, Stanford M, Mynors D (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tool Manuf 19:916–923CrossRef
5.
Zurück zum Zitat Vora P, Mumtaz K, Todd I, Hopkinson N (2015) AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit Manuf 7:12–19 Vora P, Mumtaz K, Todd I, Hopkinson N (2015) AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit Manuf 7:12–19
6.
Zurück zum Zitat Allmen M v, Blatter A (2013) Laser-beam interactions with materials: physical principles and applications, 2nd edn. Springer Science & Business Media, Berlin Allmen M v, Blatter A (2013) Laser-beam interactions with materials: physical principles and applications, 2nd edn. Springer Science & Business Media, Berlin
7.
Zurück zum Zitat Geiger M, Leitz K-H, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng 3:127–136CrossRef Geiger M, Leitz K-H, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng 3:127–136CrossRef
8.
Zurück zum Zitat Gürtler F-J, Karg M, Leitz K-H, Schmidt M (2013) Simulation of laser beam melting of steel powders using the three-dimensional Volume of Fluid Method. Phys Proc 41:881–886CrossRef Gürtler F-J, Karg M, Leitz K-H, Schmidt M (2013) Simulation of laser beam melting of steel powders using the three-dimensional Volume of Fluid Method. Phys Proc 41:881–886CrossRef
9.
Zurück zum Zitat Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput Mater Sci 135:78–89CrossRef Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput Mater Sci 135:78–89CrossRef
10.
Zurück zum Zitat Rai A, Markl M, Körner C (2016) A coupled cellular automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci 135:37–48CrossRef Rai A, Markl M, Körner C (2016) A coupled cellular automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci 135:37–48CrossRef
11.
Zurück zum Zitat Ferziger JH, Perić M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRefMATH Ferziger JH, Perić M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRefMATH
12.
Zurück zum Zitat Jasak H (2009) OpenFOAM: open source CFD in research and industry. Int J Nav 1:89–94 Jasak H (2009) OpenFOAM: open source CFD in research and industry. Int J Nav 1:89–94
13.
Zurück zum Zitat Hirt CW, Nichols BD (1979) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefMATH Hirt CW, Nichols BD (1979) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefMATH
14.
Zurück zum Zitat Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267CrossRefMATH Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267CrossRefMATH
15.
Zurück zum Zitat Deshpande SS, Anumolu L, Trujillo MF (2012) Evaluating the performance of the two-phase flow solver interfoam. Comput Sci Discov 5:014016 Deshpande SS, Anumolu L, Trujillo MF (2012) Evaluating the performance of the two-phase flow solver interfoam. Comput Sci Discov 5:014016
16.
Zurück zum Zitat Almeland SK (2018) Implementation of an air-entrainment model in interFoam. In: Proceedings of CFD with OpenSource Software, Edited by Nilsson. H Almeland SK (2018) Implementation of an air-entrainment model in interFoam. In: Proceedings of CFD with OpenSource Software, Edited by Nilsson. H
17.
Zurück zum Zitat Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15(10):1787–1806CrossRefMATH Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15(10):1787–1806CrossRefMATH
18.
Zurück zum Zitat Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65CrossRefMathSciNetMATH Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65CrossRefMathSciNetMATH
19.
Zurück zum Zitat White FM (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, Boston White FM (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, Boston
20.
Zurück zum Zitat Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, Hoboken Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, Hoboken
21.
Zurück zum Zitat Paradis P-F, Ishikawa T, Yoda S (2002) Non-Contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int J Thermophys 23:825–842CrossRef Paradis P-F, Ishikawa T, Yoda S (2002) Non-Contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int J Thermophys 23:825–842CrossRef
22.
Zurück zum Zitat Sazhin SS, Sazhina EM, Faltsi-Saravelou O, Wild P (1996) The P-1 model for thermal radiation transfer: advantages and limitations. Fuel 75(3):289–294 Sazhin SS, Sazhina EM, Faltsi-Saravelou O, Wild P (1996) The P-1 model for thermal radiation transfer: advantages and limitations. Fuel 75(3):289–294
23.
Zurück zum Zitat Katzarov I, Malinov S, Sha W (2002) Finite element modeling of the morphology of \(\beta\) to \(\alpha\) phase transformation in Ti-6Al-4V alloy. Metall Mater Trans A 33:1027–1040CrossRef Katzarov I, Malinov S, Sha W (2002) Finite element modeling of the morphology of \(\beta\) to \(\alpha\) phase transformation in Ti-6Al-4V alloy. Metall Mater Trans A 33:1027–1040CrossRef
24.
Zurück zum Zitat Holfelder P, Lu J, Krempaszky C, Werner E (2016) A phase field approach for modeling melting and re-solidifaction of Ti-6Al-4V during selective laser melting. Key Eng Mater 704:241–255CrossRef Holfelder P, Lu J, Krempaszky C, Werner E (2016) A phase field approach for modeling melting and re-solidifaction of Ti-6Al-4V during selective laser melting. Key Eng Mater 704:241–255CrossRef
25.
Zurück zum Zitat Grafe U, Böttger B, Tiaden J, Fries SG (2000) Coupling of multicomponent thermodynamic databases to a phase field model: application to solidification and solid-state transformations of superalloys. Scr Mater 42:1179–1186CrossRef Grafe U, Böttger B, Tiaden J, Fries SG (2000) Coupling of multicomponent thermodynamic databases to a phase field model: application to solidification and solid-state transformations of superalloys. Scr Mater 42:1179–1186CrossRef
26.
Zurück zum Zitat Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001CrossRef Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001CrossRef
27.
Zurück zum Zitat Dorr MR, Fattebert J-L, Wickett ME, Belak JF, Turchi PEA (2010) A numerical algorithm for the solution of a phase-field model of polycrystalline materials. J Comput Phys 229(3):626–641CrossRefMathSciNetMATH Dorr MR, Fattebert J-L, Wickett ME, Belak JF, Turchi PEA (2010) A numerical algorithm for the solution of a phase-field model of polycrystalline materials. J Comput Phys 229(3):626–641CrossRefMathSciNetMATH
28.
Zurück zum Zitat Hoyt JJ, Asta M, Karma A (2003) Atomistic and continuum modeling of dendritic solidification. Mater Sci Eng R-Rep 41:121–163CrossRef Hoyt JJ, Asta M, Karma A (2003) Atomistic and continuum modeling of dendritic solidification. Mater Sci Eng R-Rep 41:121–163CrossRef
29.
Zurück zum Zitat Lavernia EJ, Srivatsan TS (2009) The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 45:287–325CrossRef Lavernia EJ, Srivatsan TS (2009) The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 45:287–325CrossRef
30.
Zurück zum Zitat Mullis AM (2006) Quantifcation of mesh induced anisotropy effect in the phase field method. Comput Mater Sci 36:345–353CrossRef Mullis AM (2006) Quantifcation of mesh induced anisotropy effect in the phase field method. Comput Mater Sci 36:345–353CrossRef
31.
Zurück zum Zitat Woodruff DP (1973) The solid-liquid interface, 1st edn. Cambridge University Press, Cambridge Woodruff DP (1973) The solid-liquid interface, 1st edn. Cambridge University Press, Cambridge
32.
Zurück zum Zitat Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58:3303–3312CrossRef Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58:3303–3312CrossRef
33.
Zurück zum Zitat Simonelli M, Tse Y, Tuck C (2014) On the texture formation of selective laser melted Ti-6Al-4V. Metall Mater Trans A 45:2863–2872CrossRef Simonelli M, Tse Y, Tuck C (2014) On the texture formation of selective laser melted Ti-6Al-4V. Metall Mater Trans A 45:2863–2872CrossRef
34.
Zurück zum Zitat Hielscher R, Schaeben H (2008) Texture analysis with MTEX–free and open source software toolbox. J Appl Cryst 41:1024–1037CrossRef Hielscher R, Schaeben H (2008) Texture analysis with MTEX–free and open source software toolbox. J Appl Cryst 41:1024–1037CrossRef
36.
Zurück zum Zitat Thermo-Calc Software (1998) TTTI2 Thermotech Ti-based Alloys database version 2. Accessed 9 Mar 1998 Thermo-Calc Software (1998) TTTI2 Thermotech Ti-based Alloys database version 2. Accessed 9 Mar 1998
Metadaten
Titel
Simulation-assisted analysis of microstructural evolution of Ti–6Al–4V during laser powder bed fusion
verfasst von
Peter Holfelder
Armin Witte
Publikationsdatum
10.04.2020
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 3/2020
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-020-00114-w

Weitere Artikel der Ausgabe 3/2020

Progress in Additive Manufacturing 3/2020 Zur Ausgabe

Editorial

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.