Skip to main content

2014 | OriginalPaper | Buchkapitel

Simulation of a Rubber Beam Interacting with a Two-Phase Flow in a Rolling Tank

verfasst von : Erik Svenning, Andreas Mark, Fredrik Edelvik

Erschienen in: Progress in Industrial Mathematics at ECMI 2012

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this paper is to present and validate a modeling framework that can be used for simulation of industrial applications involving fluid structure interaction with large deformations. Fluid structure interaction phenomena involving elastic structures frequently occur in industrial applications such as rubber bushings filled with oil, the filling of liquid in a paperboard package or a fiber suspension flowing through a paper machine. Simulations of such phenomena are challenging due to the strong coupling between the fluid and the elastic structure. In the literature, this coupling is often achieved with an Arbitrary Lagrangian Eulerian framework or with smooth particle hydrodynamics methods. In the present work, an immersed boundary method is used to couple a finite volume based Navier-Stokes solver with a finite element based structural mechanics solver for large deformations. The benchmark of an elastic rubber beam in a rolling tank partially filled with oil is simulated. The simulations are compared to experimental data as well as numerical simulations published in the literature. 2D simulations performed in the present work agree well with previously published data. Our 3D simulations capture effects neglected in the 2D case, showing excellent agreement with previously published experiments. The good agreement with experimental data shows that the developed framework is suitable for simulation of industrial applications involving fluid structure interaction. If the structure is made of a highly elastic material, e.g. rubber, the simulation framework must be able to handle the large deformations that may occur. Immersed boundary methods are well suited for such applications, since they can efficiently handle moving objects without the need of a body-fitted mesh. Combining them with a structural mechanics solver for large deformations allows complex fluid structure interaction problems to be studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hu, H., Patankar, N., Zhu, M.: Direct numerical simulation of fluid-solid systems using arbitrary lagrangian-eulerian technique. J. Comput. Phys. 169, 427–462 (2001)CrossRefMATHMathSciNet Hu, H., Patankar, N., Zhu, M.: Direct numerical simulation of fluid-solid systems using arbitrary lagrangian-eulerian technique. J. Comput. Phys. 169, 427–462 (2001)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Onate, E., Idelsohn, S., Pin, F.D., Aubry, R.: The particle finite element method. An overview. Int. J. Comput. Methods 1, 267–307 (2004)CrossRefMATH Onate, E., Idelsohn, S., Pin, F.D., Aubry, R.: The particle finite element method. An overview. Int. J. Comput. Methods 1, 267–307 (2004)CrossRefMATH
6.
Zurück zum Zitat Majumdar, S., Iaccarino, G., Durbin, P.: Rans solvers with adaptive structured boundary non-conforming grids. Technical report, Center for Turbulence Research (2001). Annual Research Briefs Majumdar, S., Iaccarino, G., Durbin, P.: Rans solvers with adaptive structured boundary non-conforming grids. Technical report, Center for Turbulence Research (2001). Annual Research Briefs
7.
Zurück zum Zitat Mark, A., van Wachem, B.: Derivation and validation of a novel implicit second-order accurate immersed boundary method. J. Comput. Phys. 227, 6660–6680 (2008)CrossRefMATHMathSciNet Mark, A., van Wachem, B.: Derivation and validation of a novel implicit second-order accurate immersed boundary method. J. Comput. Phys. 227, 6660–6680 (2008)CrossRefMATHMathSciNet
8.
Zurück zum Zitat Mark, A., Rundqvist, R., Edelvik, F.: Comparison between different immersed boundary conditions for simulation of complex fluid flows. Fluid Dyn. Mater. Process. 7(3), 241–258 (2011) Mark, A., Rundqvist, R., Edelvik, F.: Comparison between different immersed boundary conditions for simulation of complex fluid flows. Fluid Dyn. Mater. Process. 7(3), 241–258 (2011)
9.
Zurück zum Zitat Mark, A., Svenning, E., Rundqvist, R., Edelvik, F., Glatt, E., Rief, S., Wiegmann, A., Fredlund, M., Lai, R., Martinsson, L., Nyman, U.: Microstructure simulation of early paper forming using immersed boundary methods. TAPPI J. 10(11), 23–30 (2011) Mark, A., Svenning, E., Rundqvist, R., Edelvik, F., Glatt, E., Rief, S., Wiegmann, A., Fredlund, M., Lai, R., Martinsson, L., Nyman, U.: Microstructure simulation of early paper forming using immersed boundary methods. TAPPI J. 10(11), 23–30 (2011)
10.
Zurück zum Zitat Svenning, E., Mark, A., Edelvik, F., Glatt, E., Rief, S., Wiegmann, A., Martinsson, L., Lai, R., Fredlund, M., Nyman, U.: Multiphase simulation of fiber suspension flows using immersed boundary methods. Nord. Pulp Pap. Res. J. 27, 184–191 (2012)CrossRef Svenning, E., Mark, A., Edelvik, F., Glatt, E., Rief, S., Wiegmann, A., Martinsson, L., Lai, R., Fredlund, M., Nyman, U.: Multiphase simulation of fiber suspension flows using immersed boundary methods. Nord. Pulp Pap. Res. J. 27, 184–191 (2012)CrossRef
11.
Zurück zum Zitat Mark, A., Svenning, E., Edelvik, F.: An immersed boundary method for simulation of flow with heat transfer. Int. J. Heat Mass Transf. 56, 424–435 (2013)CrossRef Mark, A., Svenning, E., Edelvik, F.: An immersed boundary method for simulation of flow with heat transfer. Int. J. Heat Mass Transf. 56, 424–435 (2013)CrossRef
12.
Zurück zum Zitat Forster, C., Wall, W., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196, 1278–1293 (2007)CrossRefMathSciNet Forster, C., Wall, W., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196, 1278–1293 (2007)CrossRefMathSciNet
13.
Zurück zum Zitat Degroote, J., Bathe, K., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87, 793–801 (2009)CrossRef Degroote, J., Bathe, K., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87, 793–801 (2009)CrossRef
14.
Zurück zum Zitat Doormaal, J.V., Raithby, G.: Enhancements of the simple method for predicting incompressible fluid flows. Numer. Heat Transf. 7, 147–163 (1984)MATH Doormaal, J.V., Raithby, G.: Enhancements of the simple method for predicting incompressible fluid flows. Numer. Heat Transf. 7, 147–163 (1984)MATH
15.
Zurück zum Zitat Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J1 21, 1527–1532 (1983) Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J1 21, 1527–1532 (1983)
16.
Zurück zum Zitat Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)MATH Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)MATH
17.
Zurück zum Zitat Botia-Vera, E., Bulian, G., Lobovsky, L.: Three sph novel benchmark test cases for free surface flows. In: 5th ERCOFTAC SPHERIC Workshop on SPH Applications (2010) Botia-Vera, E., Bulian, G., Lobovsky, L.: Three sph novel benchmark test cases for free surface flows. In: 5th ERCOFTAC SPHERIC Workshop on SPH Applications (2010)
19.
Zurück zum Zitat Degroote, J., Souto-Iglesias, A., van Paepegem, W., Annerel, S., Bruggeman, P., Vierendeels, J.: Partitioned simulation of the interaction between an elastic structure and free surface flow. Comput. Methods Appl. Mech. Eng. 199, 2085–2098 (2010)CrossRefMATH Degroote, J., Souto-Iglesias, A., van Paepegem, W., Annerel, S., Bruggeman, P., Vierendeels, J.: Partitioned simulation of the interaction between an elastic structure and free surface flow. Comput. Methods Appl. Mech. Eng. 199, 2085–2098 (2010)CrossRefMATH
Metadaten
Titel
Simulation of a Rubber Beam Interacting with a Two-Phase Flow in a Rolling Tank
verfasst von
Erik Svenning
Andreas Mark
Fredrik Edelvik
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-05365-3_21

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.