Skip to main content

2012 | OriginalPaper | Buchkapitel

Simulation of AE Wave Propagation in Thin Plate for Source Identification

verfasst von : A. Roy, A. C. C. Tan, Y. T. Gu, M. Kaphle

Erschienen in: Engineering Asset Management and Infrastructure Sustainability

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in a wide spectrum of areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microseismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleigh (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Holford K, Lark R (2005) Acoustic emission testing of bridges. In: Fu G (ed) Inspection and monitoring techniques for bridges and civil structures. Woodhead publishing limited and CRC, Cambridge Holford K, Lark R (2005) Acoustic emission testing of bridges. In: Fu G (ed) Inspection and monitoring techniques for bridges and civil structures. Woodhead publishing limited and CRC, Cambridge
2.
Zurück zum Zitat Giurgiutiu V, Bao J, Zhao W (2001) Active sensor wave propagation health monitoring of beam and plate structures. In: Smart Structures and Materials 2001—Smart Structures and Integrated Systems, SPIE, Newport Beach, CA, United states, 5–8 March 2001 Giurgiutiu V, Bao J, Zhao W (2001) Active sensor wave propagation health monitoring of beam and plate structures. In: Smart Structures and Materials 2001—Smart Structures and Integrated Systems, SPIE, Newport Beach, CA, United states, 5–8 March 2001
3.
Zurück zum Zitat Peng H et al (2010) Concise analysis of wave propagation using the spectral element method and identification of delamination in CF/EP composite beams. Smart Mater Struct 19(8):085018CrossRef Peng H et al (2010) Concise analysis of wave propagation using the spectral element method and identification of delamination in CF/EP composite beams. Smart Mater Struct 19(8):085018CrossRef
4.
Zurück zum Zitat Rose J (1999) Ultrasound waves in solid media. cambridge University Press, Cambridge Rose J (1999) Ultrasound waves in solid media. cambridge University Press, Cambridge
5.
Zurück zum Zitat Gorman MR, Prosser WH (1998) Application of normal mode expansion to AE waves in finite plates. NASA Langley Technical Report Server Gorman MR, Prosser WH (1998) Application of normal mode expansion to AE waves in finite plates. NASA Langley Technical Report Server
6.
Zurück zum Zitat Hayashi T (2004) Guided wave animation using semi-analytical finite element method. NDT.net, Nagoya Institute of Technology, Montreal Hayashi T (2004) Guided wave animation using semi-analytical finite element method. NDT.net, Nagoya Institute of Technology, Montreal
7.
Zurück zum Zitat Ghoshal A et al (2007) Health monitoring of composite plates using acoustic wave propagation, continuous sensors and wavelet analysis. J Reinforc Plast Compos 26(1):95–112MathSciNetCrossRef Ghoshal A et al (2007) Health monitoring of composite plates using acoustic wave propagation, continuous sensors and wavelet analysis. J Reinforc Plast Compos 26(1):95–112MathSciNetCrossRef
8.
Zurück zum Zitat Han S (2007) Finite element analysis of lamb wave within a tithin aluminium plate, in Department of Aeronautical and Astromautical Engineering. Air University, Ohio Han S (2007) Finite element analysis of lamb wave within a tithin aluminium plate, in Department of Aeronautical and Astromautical Engineering. Air University, Ohio
9.
Zurück zum Zitat Gudimetla P, Kharidi A, Yarlagadda PKDV (2009) Simulation of delaminations in composite laminates: In Proceedings of the 6th international conference on precision, meso, micro and nano engineering, Coimbatore, India, 11–12 December 2009 Gudimetla P, Kharidi A, Yarlagadda PKDV (2009) Simulation of delaminations in composite laminates: In Proceedings of the 6th international conference on precision, meso, micro and nano engineering, Coimbatore, India, 11–12 December 2009
10.
Zurück zum Zitat Moser F, Jacobs LJ, Qu J (1999) Modeling elastic wave propagation in waveguides with the finite element method. NDT E Int 32(4):225–234CrossRef Moser F, Jacobs LJ, Qu J (1999) Modeling elastic wave propagation in waveguides with the finite element method. NDT E Int 32(4):225–234CrossRef
11.
Zurück zum Zitat Cau F et al (2006) A signal-processing tool for non-destructive testing of inaccessible pipes. Eng Appl Artif Intell 19(7):753–760CrossRef Cau F et al (2006) A signal-processing tool for non-destructive testing of inaccessible pipes. Eng Appl Artif Intell 19(7):753–760CrossRef
12.
Zurück zum Zitat Sun K et al (2010) Damage Identification in Thick Steel Beam Based on Guided Ultrasonic Waves. J Intell Mater Syst Struct 21(3):225–232CrossRef Sun K et al (2010) Damage Identification in Thick Steel Beam Based on Guided Ultrasonic Waves. J Intell Mater Syst Struct 21(3):225–232CrossRef
13.
Zurück zum Zitat Vallen H (2008) AGU-Vallen wavelet. In: Vallen System GmbH Vallen H (2008) AGU-Vallen wavelet. In: Vallen System GmbH
Metadaten
Titel
Simulation of AE Wave Propagation in Thin Plate for Source Identification
verfasst von
A. Roy
A. C. C. Tan
Y. T. Gu
M. Kaphle
Copyright-Jahr
2012
Verlag
Springer London
DOI
https://doi.org/10.1007/978-0-85729-493-7_60