Skip to main content

2023 | OriginalPaper | Buchkapitel

Simulation of Continuous Hot Air Multistage Fluidized Bed Dryer for Exergy Analysis Using Aspen Plus Simulator

verfasst von : D. Yogendrasasidhar, Y. Pydi Setty

Erschienen in: Energy and Exergy for Sustainable and Clean Environment, Volume 2

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modeling and simulation helps in acquiring successful results of any process. Energy assessment is one of the important studies of process equipment. To intensify the process results multistage design was implemented in continuous medium dryer. In this study, simulations were carried with multistage fluidized bed dryer using Aspen Plus Simulator by changing the values of air temperature from 40 to 80 °C and flow rate of air from 40 to 80 kg/h(Rate of solids flow -10 kg/h and feed moisture percentage -10%). The final moisture content, exergy efficiency and exergy loss of multistage fluidized dryer model were analyzed. From simulation results, the exergy efficiency obtained is in the range 0.07–0.73 for the multistage dryer. Comparison with single stage dryer is reported. The experiments were conducted on multistage fluidized bed dryer to validate the simulation results. The simulation results have shown good agreement with experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao P, Zhong L, Zhu R, Zhao Y, Luo Z, Yang X (2016) Drying characteristics and kinetics of Shengli lignite using different drying methods. Energy Convers Manage 120:330–337CrossRef Zhao P, Zhong L, Zhu R, Zhao Y, Luo Z, Yang X (2016) Drying characteristics and kinetics of Shengli lignite using different drying methods. Energy Convers Manage 120:330–337CrossRef
2.
Zurück zum Zitat Moreno RM, Antolin G, Reyes AE (2016) Heat transfer during forest biomass particles drying in an agitated fluidised bed. Biosystem Eng 151:65–71CrossRef Moreno RM, Antolin G, Reyes AE (2016) Heat transfer during forest biomass particles drying in an agitated fluidised bed. Biosystem Eng 151:65–71CrossRef
3.
Zurück zum Zitat Jafari A, Zare D (2017) Ultrasound-assisted fluidized bed drying of paddy: energy consumption and rice quality aspects. Drying Technol 35:893–902CrossRef Jafari A, Zare D (2017) Ultrasound-assisted fluidized bed drying of paddy: energy consumption and rice quality aspects. Drying Technol 35:893–902CrossRef
4.
Zurück zum Zitat Tahmasebi A, Yu J, Han Y (2014) A kinetic study of microwave and fluidized-bed drying of a chinese lignite. Chem Eng Res Des 92:54–65CrossRef Tahmasebi A, Yu J, Han Y (2014) A kinetic study of microwave and fluidized-bed drying of a chinese lignite. Chem Eng Res Des 92:54–65CrossRef
5.
Zurück zum Zitat Hu X, Kurian J, Gariepy Y, Raghavan V (2017) Optimization of microwave-assisted fluidized-bed drying of carrot slices. Drying Technol 35:1234–1248CrossRef Hu X, Kurian J, Gariepy Y, Raghavan V (2017) Optimization of microwave-assisted fluidized-bed drying of carrot slices. Drying Technol 35:1234–1248CrossRef
6.
Zurück zum Zitat Gomez-garcia F, Gauthier D, Flamant G (2017) Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage. Appl Energy 190:510–523CrossRef Gomez-garcia F, Gauthier D, Flamant G (2017) Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage. Appl Energy 190:510–523CrossRef
7.
Zurück zum Zitat Hasatani M, Arai N, Hori K (1985) Drying of granular particles in a multistage inclined fluidized bed with mechanical vibration. Drying Technol 3:39–62CrossRef Hasatani M, Arai N, Hori K (1985) Drying of granular particles in a multistage inclined fluidized bed with mechanical vibration. Drying Technol 3:39–62CrossRef
8.
Zurück zum Zitat Srinivasakannan C, Bala subramanian N (1998) Some drying aspects of multistage fluidized beds. Chem Eng Technol 21:961–966 Srinivasakannan C, Bala subramanian N (1998) Some drying aspects of multistage fluidized beds. Chem Eng Technol 21:961–966
9.
Zurück zum Zitat Choi KB, Park SI, Park YS, Sung SW, Lee DH (2002) Drying characteristics of millet in a continuous multistage fluidized bed. Korean J Chem Eng 19:1106–1111CrossRef Choi KB, Park SI, Park YS, Sung SW, Lee DH (2002) Drying characteristics of millet in a continuous multistage fluidized bed. Korean J Chem Eng 19:1106–1111CrossRef
10.
Zurück zum Zitat Nazghelichi T, Aghbashlo M, Kianmehr MH, Omid M (2011) Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by artificial neural networks. Drying Technol 29:295–307CrossRef Nazghelichi T, Aghbashlo M, Kianmehr MH, Omid M (2011) Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by artificial neural networks. Drying Technol 29:295–307CrossRef
11.
Zurück zum Zitat Yahya M, Fudholi A, Sopian K (2017) Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace. Renew Energy 105:22–29CrossRef Yahya M, Fudholi A, Sopian K (2017) Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace. Renew Energy 105:22–29CrossRef
12.
Zurück zum Zitat Azadbakht M, Aghili H, Ziaratban A, Torshizi MV (2017) Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy 120:947–958CrossRef Azadbakht M, Aghili H, Ziaratban A, Torshizi MV (2017) Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy 120:947–958CrossRef
13.
Zurück zum Zitat Darvishi H, Azadbakht M, Noralahi B (2018) Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation. Renew Energy 120:201–208CrossRef Darvishi H, Azadbakht M, Noralahi B (2018) Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation. Renew Energy 120:201–208CrossRef
14.
Zurück zum Zitat Ergün A, Ceylan İ, Acar B, Erkaymaz H (2017) Energy–exergy–ANN analyses of solar-assisted fluidized bed dryer. Drying Technol 35:1711–1720CrossRef Ergün A, Ceylan İ, Acar B, Erkaymaz H (2017) Energy–exergy–ANN analyses of solar-assisted fluidized bed dryer. Drying Technol 35:1711–1720CrossRef
15.
Zurück zum Zitat Yahya M, Fahmi H, Fudholi A, Sopian K (2018) Performance and economic analyses on solar-assisted heat pump fluidised bed dryer integrated with biomass furnace for rice drying. Sol Energy 174:1058–1067CrossRef Yahya M, Fahmi H, Fudholi A, Sopian K (2018) Performance and economic analyses on solar-assisted heat pump fluidised bed dryer integrated with biomass furnace for rice drying. Sol Energy 174:1058–1067CrossRef
16.
Zurück zum Zitat Motevali A, Amiri CR (2017) Effect of various drying bed on thermodynamic characteristics. Case Stud Therm Eng 10:399–406CrossRef Motevali A, Amiri CR (2017) Effect of various drying bed on thermodynamic characteristics. Case Stud Therm Eng 10:399–406CrossRef
17.
Zurück zum Zitat Mujumdar AS (2014) Handbook of industrial drying. Marcel Dekker, New YorkCrossRef Mujumdar AS (2014) Handbook of industrial drying. Marcel Dekker, New YorkCrossRef
18.
Zurück zum Zitat Badaoui O, Hanini S, Djebli A, Brahim H, Benhamou A (2019) Experimental and modeling study of tomato pomace waste drying in a new solar greenhouse: evaluation of new drying. Renew Energy 133:144–155CrossRef Badaoui O, Hanini S, Djebli A, Brahim H, Benhamou A (2019) Experimental and modeling study of tomato pomace waste drying in a new solar greenhouse: evaluation of new drying. Renew Energy 133:144–155CrossRef
19.
Zurück zum Zitat Khanali M, Giglou AK, Ra S (2018) Model development for shelled corn drying in a plug flow fluidized bed dryer. Eng Agric Environ Food 11:1–8CrossRef Khanali M, Giglou AK, Ra S (2018) Model development for shelled corn drying in a plug flow fluidized bed dryer. Eng Agric Environ Food 11:1–8CrossRef
20.
Zurück zum Zitat Tarigan E (2018) Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case Stud Therm Eng 12:149–165CrossRef Tarigan E (2018) Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case Stud Therm Eng 12:149–165CrossRef
21.
Zurück zum Zitat Azmir J, Hou Q, Yu A (2018) Discrete particle simulation of food grain drying in a fluidised bed. Powder Technol 323:238–249CrossRef Azmir J, Hou Q, Yu A (2018) Discrete particle simulation of food grain drying in a fluidised bed. Powder Technol 323:238–249CrossRef
22.
Zurück zum Zitat Malekjani N, Jafari SM (2018) Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends Food Sci Technol 78:206–223CrossRef Malekjani N, Jafari SM (2018) Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends Food Sci Technol 78:206–223CrossRef
23.
Zurück zum Zitat Neba FA, Nono YJ (2017) Modeling and simulated design: a novel hybrid dryer and dryer design software. Comput Chem Eng 104:128–140CrossRef Neba FA, Nono YJ (2017) Modeling and simulated design: a novel hybrid dryer and dryer design software. Comput Chem Eng 104:128–140CrossRef
24.
Zurück zum Zitat Strange L, Poulsen M, Sørensen K, Condra T (2018) Modelling of hot air chamber designs of a continuous flow grain dryer. Eng Sci Technol Int J 21:1047–1055 Strange L, Poulsen M, Sørensen K, Condra T (2018) Modelling of hot air chamber designs of a continuous flow grain dryer. Eng Sci Technol Int J 21:1047–1055
25.
Zurück zum Zitat Norbert L, Kjølstad N, Henrik H, Utzen C, Bagterp J (2017) An experimentally validated simulation model for a four-stage spray dryer. J Process Control 57:50–65CrossRef Norbert L, Kjølstad N, Henrik H, Utzen C, Bagterp J (2017) An experimentally validated simulation model for a four-stage spray dryer. J Process Control 57:50–65CrossRef
26.
Zurück zum Zitat Aghbashlo M (2016) Exergetic simulation of a combined infrared-convective drying process. Heat Mass Transf 52:829–844CrossRef Aghbashlo M (2016) Exergetic simulation of a combined infrared-convective drying process. Heat Mass Transf 52:829–844CrossRef
27.
Zurück zum Zitat Ranjbaran M, Zare D (2013) Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy 59:484–493CrossRef Ranjbaran M, Zare D (2013) Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy 59:484–493CrossRef
28.
Zurück zum Zitat Lucatero H, Ruiz E, Mayorga M (2015) Solar dryer exergetic and energetic efficiency analysis. In: Proceedings of COMSOL conference Boston Lucatero H, Ruiz E, Mayorga M (2015) Solar dryer exergetic and energetic efficiency analysis. In: Proceedings of COMSOL conference Boston
29.
Zurück zum Zitat Dogbe ES, Mandegari MA, Gorgens JF (2018) Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus simulation of the process. Energy 145:614–625CrossRef Dogbe ES, Mandegari MA, Gorgens JF (2018) Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus simulation of the process. Energy 145:614–625CrossRef
30.
Zurück zum Zitat Karthikeyan AK, Murugavelh S (2018) Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renew Energy 128:305–312CrossRef Karthikeyan AK, Murugavelh S (2018) Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renew Energy 128:305–312CrossRef
31.
Zurück zum Zitat Sarker MSH, Ibrahim MN, Abdul Aziz N, Punan MS (2015) Energy and exergy analysis of industrial fluidized bed drying of paddy. Energy 84:131–138CrossRef Sarker MSH, Ibrahim MN, Abdul Aziz N, Punan MS (2015) Energy and exergy analysis of industrial fluidized bed drying of paddy. Energy 84:131–138CrossRef
32.
Zurück zum Zitat Dincer I, Zamfirescu C (2016) Drying phenomena—theory and applications. Wiley, United Kingdom Dincer I, Zamfirescu C (2016) Drying phenomena—theory and applications. Wiley, United Kingdom
33.
Zurück zum Zitat Nazghelichi T, Kianmehr MH, Aghbashlo M (2010) Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy 35:4679–4684CrossRef Nazghelichi T, Kianmehr MH, Aghbashlo M (2010) Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy 35:4679–4684CrossRef
Metadaten
Titel
Simulation of Continuous Hot Air Multistage Fluidized Bed Dryer for Exergy Analysis Using Aspen Plus Simulator
verfasst von
D. Yogendrasasidhar
Y. Pydi Setty
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8274-2_23