Skip to main content

2011 | OriginalPaper | Buchkapitel

7. Simulation of Electronic Sensing of Biomolecules in Translocation Through a Nanopore in a Semiconductor Membrane

verfasst von : Maria E. Gracheva, Amandine Leroux, Jacques Destiné, Jean-Pierre Leburton

Erschienen in: Nanopores

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A two-level computational model for simulation of the electric signal detected on the electrodes of a Semiconductor-Oxide-Semiconductor (SOS) capacitor forming a nanoscale artificial membrane, and containing a nanopore with translocating DNA are presented. At the device level, a three-dimensional self-consistent scheme involving snapshots of the DNA charge distribution, as well as the electrolytic charge and the charge in the semiconductor membrane compute the electrostatic potential over the whole solid-liquid system. With this numerical approach we investigate the possibility of resolving individual nucleotides as well as their types in the absence of conformational disorder. At the system level, we develop a circuit-element model for the SOS semiconductor membrane where the membrane is discretized into interconnected elementary circuit elements to assess the response of the DNA away from the pore. The model is tested on the translocation of 11 base single-stranded C3AC7 DNA molecule, for which the electric signal shows good qualitative agreement with the multi-scale device approach of Gracheva et al. also described in the first part of this chapter (Gracheva et al., Nanotech. 17, 622–633, 2006), while quantifying the low-pass filtering in the membrane.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W., Characterization of individual polynucleotide molecules using a membrane channel, PNAS 93, 13770–13773 (1996).CrossRef Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W., Characterization of individual polynucleotide molecules using a membrane channel, PNAS 93, 13770–13773 (1996).CrossRef
2.
Zurück zum Zitat Saenger, W. 1984. Principles of Nucleic Acid Structure. Springer Verlag, New York. Saenger, W. 1984. Principles of Nucleic Acid Structure. Springer Verlag, New York.
3.
Zurück zum Zitat Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J.E., Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science 274, 1859–1865 (1996).CrossRef Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J.E., Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science 274, 1859–1865 (1996).CrossRef
4.
Zurück zum Zitat Akenson, M., Branton, D., Kasianowicz, J.J., Brandin, E., Deamer, D.W., Microsecond timescale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules, Biophys. J. 77, 3227–3233 (1999).CrossRef Akenson, M., Branton, D., Kasianowicz, J.J., Brandin, E., Deamer, D.W., Microsecond timescale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules, Biophys. J. 77, 3227–3233 (1999).CrossRef
5.
Zurück zum Zitat Meller, A., Nivon, L., Brandin, E., Golovchenko, J., Branton, D., Rapid nanopore discrimination between single polynucleotide molecules, PNAS 97, 1079–1084 (2000).CrossRef Meller, A., Nivon, L., Brandin, E., Golovchenko, J., Branton, D., Rapid nanopore discrimination between single polynucleotide molecules, PNAS 97, 1079–1084 (2000).CrossRef
6.
Zurück zum Zitat Deamer, D.W., Akeson, M., Nanopores and nucleic acids: prospects for ultrarapid sequencing, Trends in Biotech. 18, 147–151 (2000).CrossRef Deamer, D.W., Akeson, M., Nanopores and nucleic acids: prospects for ultrarapid sequencing, Trends in Biotech. 18, 147–151 (2000).CrossRef
7.
Zurück zum Zitat Vercoutere, W., Winters-Hilt, S., Olsen, H., Deamer, D., Haussler, D., Akeson, M., Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel, Nature Biotech. 19, 248–252 (2001).CrossRef Vercoutere, W., Winters-Hilt, S., Olsen, H., Deamer, D., Haussler, D., Akeson, M., Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel, Nature Biotech. 19, 248–252 (2001).CrossRef
8.
Zurück zum Zitat Meller, A., Nivon, L., Branton, D., Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett. 86, 3435–3438 (2001).CrossRef Meller, A., Nivon, L., Branton, D., Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett. 86, 3435–3438 (2001).CrossRef
9.
Zurück zum Zitat Meller, A., Branton, D., Single molecule measurements of DNA transport through a nanopore, Electrophoresis 23, 2583–2591 (2002).CrossRef Meller, A., Branton, D., Single molecule measurements of DNA transport through a nanopore, Electrophoresis 23, 2583–2591 (2002).CrossRef
10.
Zurück zum Zitat Deamer, D.W., Branton, D., Characterization of nucleic acids by nanopore analysis, Acc. Chem. Res. 35, 817–825 (2002).CrossRef Deamer, D.W., Branton, D., Characterization of nucleic acids by nanopore analysis, Acc. Chem. Res. 35, 817–825 (2002).CrossRef
11.
Zurück zum Zitat Li, J., Gershow, M., Stein, D., Brandin, E., Golovchenko, J.A., DNA molecules and configurations in a solid-state nanopore microscope, Nature materials 2, 611–615 (2003).CrossRef Li, J., Gershow, M., Stein, D., Brandin, E., Golovchenko, J.A., DNA molecules and configurations in a solid-state nanopore microscope, Nature materials 2, 611–615 (2003).CrossRef
12.
Zurück zum Zitat Heng, J.B., Dimitrov, V., Grinkova, Y.V., Ho, C., Kim, T., Muller, D., Sligar, S., Sorsch, T., Twesten, R., Timp, R., Timp, G., The detection of DNA using a silicon nanopore, IEDM Tech. Digest 8, 767–770 (2003). Heng, J.B., Dimitrov, V., Grinkova, Y.V., Ho, C., Kim, T., Muller, D., Sligar, S., Sorsch, T., Twesten, R., Timp, R., Timp, G., The detection of DNA using a silicon nanopore, IEDM Tech. Digest 8, 767–770 (2003).
13.
Zurück zum Zitat Heng, J.B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y.V., Sligar, S., Schulten, K., Timp, G., Sizing DNA using an artificial nanopore, Biophys. J. 87, 2905–2911 (2004).CrossRef Heng, J.B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y.V., Sligar, S., Schulten, K., Timp, G., Sizing DNA using an artificial nanopore, Biophys. J. 87, 2905–2911 (2004).CrossRef
14.
Zurück zum Zitat Ho, C., Qiao, R., Heng, J.B., Chatterjee, A., Timp, R.J., Aluru, N.R., Timp, G., Electrolytic transport through a synthetic nanometer-diameter pore, PNAS 102, 10445–10450 (2005).CrossRef Ho, C., Qiao, R., Heng, J.B., Chatterjee, A., Timp, R.J., Aluru, N.R., Timp, G., Electrolytic transport through a synthetic nanometer-diameter pore, PNAS 102, 10445–10450 (2005).CrossRef
15.
Zurück zum Zitat Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C., Fabrication of solid-state nanopores with single-nanometer precision, Nature Materials 2, 537–540 (2003).CrossRef Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C., Fabrication of solid-state nanopores with single-nanometer precision, Nature Materials 2, 537–540 (2003).CrossRef
16.
Zurück zum Zitat Chang, H., Kosari, F., Andreadakis, G., Alam, M.A., Vasmatzis, G., Bashir, R., DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels, Nano Lett. 4, 1551–1556 (2004).CrossRef Chang, H., Kosari, F., Andreadakis, G., Alam, M.A., Vasmatzis, G., Bashir, R., DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels, Nano Lett. 4, 1551–1556 (2004).CrossRef
17.
Zurück zum Zitat Aksimentiev, A., Heng, J.B., Timp, G., Schulten, K., Microscopic kinetics of DNA translocation through synthetic nanopores, Biophys. J. 87, 2086–2097 (2004).CrossRef Aksimentiev, A., Heng, J.B., Timp, G., Schulten, K., Microscopic kinetics of DNA translocation through synthetic nanopores, Biophys. J. 87, 2086–2097 (2004).CrossRef
18.
Zurück zum Zitat Heng, J.B., Aksimentiev, A., Ho, C., Dimitrov, V., Sorsch, T., Miner, J., Mansfield, W., Schulten, K., Timp, G., Beyond the gene chip, Bell Labs Tech. J. 10, 5–22 (2005).CrossRef Heng, J.B., Aksimentiev, A., Ho, C., Dimitrov, V., Sorsch, T., Miner, J., Mansfield, W., Schulten, K., Timp, G., Beyond the gene chip, Bell Labs Tech. J. 10, 5–22 (2005).CrossRef
19.
Zurück zum Zitat Gracheva, M. E., Xiong, A., Aksimentiev, A., Schulten, K., Timp, G., Leburton, J.-P., Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor, Nanotech. 17, 622–633 (2006).CrossRef Gracheva, M. E., Xiong, A., Aksimentiev, A., Schulten, K., Timp, G., Leburton, J.-P., Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor, Nanotech. 17, 622–633 (2006).CrossRef
20.
Zurück zum Zitat King, G.M., Golovchenko, J.A., Probing nanotube-nanopore interactions, Phys. Rev. Lett. 95, 216103–216107 (2005).CrossRef King, G.M., Golovchenko, J.A., Probing nanotube-nanopore interactions, Phys. Rev. Lett. 95, 216103–216107 (2005).CrossRef
21.
Zurück zum Zitat Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., Yang, P., DNA translocation in inorganic nanotubes, Nano Lett. 5, 1633–1637 (2005).CrossRef Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., Yang, P., DNA translocation in inorganic nanotubes, Nano Lett. 5, 1633–1637 (2005).CrossRef
22.
Zurück zum Zitat Fologea, D., Uplinger, J., Thomas, B., McNabb, D.S., Li, J., Slowing DNA translocation in a solid-state nanopore, Nano Lett. 5, 1734–1737 (2005).CrossRef Fologea, D., Uplinger, J., Thomas, B., McNabb, D.S., Li, J., Slowing DNA translocation in a solid-state nanopore, Nano Lett. 5, 1734–1737 (2005).CrossRef
23.
Zurück zum Zitat Zwolak, M., Ventra, M.D., Electronic Signature of DNA Nucleotides via Transverse Transport, Nano Lett. 5, 421–424 (2005); Lagerqvist, J., Zwolak, M., Di Ventra, M., arXiv:cond-mat/0601394 (2006). Zwolak, M., Ventra, M.D., Electronic Signature of DNA Nucleotides via Transverse Transport, Nano Lett. 5, 421–424 (2005); Lagerqvist, J., Zwolak, M., Di Ventra, M., arXiv:cond-mat/0601394 (2006).
24.
Zurück zum Zitat Aksimentiev, A., Heng, J. B., Timp, G., Schulten, K., Microscopic kinetics of DNA translocation through synthetic nanopores, Biophysical Journal 87, 2086–2097 (2004).CrossRef Aksimentiev, A., Heng, J. B., Timp, G., Schulten, K., Microscopic kinetics of DNA translocation through synthetic nanopores, Biophysical Journal 87, 2086–2097 (2004).CrossRef
25.
Zurück zum Zitat Heng, J.B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y.V., Sligar, S., Schulten, K., Timp, G., The electromechanics of DNA in a synthetic nanopore, Biophys. J. 90, 1098–1106 (2006).CrossRef Heng, J.B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y.V., Sligar, S., Schulten, K., Timp, G., The electromechanics of DNA in a synthetic nanopore, Biophys. J. 90, 1098–1106 (2006).CrossRef
26.
Zurück zum Zitat Heng, J., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y., Sligar, S., Schulten, K., Timp, G., Stretching DNA using the electric field in a synthetic nanopore, Nano Lett. 5, 1883–1888 (2005).CrossRef Heng, J., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y., Sligar, S., Schulten, K., Timp, G., Stretching DNA using the electric field in a synthetic nanopore, Nano Lett. 5, 1883–1888 (2005).CrossRef
27.
Zurück zum Zitat Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipote, C., Skeel, R.D., Kale, L., Schulten, K., Scalable molecular dynamics with NAMD, J. of Computational Chemistry 26, 1781–1802 (2005).CrossRef Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipote, C., Skeel, R.D., Kale, L., Schulten, K., Scalable molecular dynamics with NAMD, J. of Computational Chemistry 26, 1781–1802 (2005).CrossRef
28.
Zurück zum Zitat Sze, S.M. (1981). Physics of semiconductor devices. Wiley-Interscience publication. Sze, S.M. (1981). Physics of semiconductor devices. Wiley-Interscience publication.
29.
Zurück zum Zitat Sansom, M.S., Smith, G.R., Adcock, C., Biggin, P.C., The dielectric properties of water within model transbilayer pores, Biophys. J. 73, 2404–2415 (1997).CrossRef Sansom, M.S., Smith, G.R., Adcock, C., Biggin, P.C., The dielectric properties of water within model transbilayer pores, Biophys. J. 73, 2404–2415 (1997).CrossRef
30.
Zurück zum Zitat Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2001). Numerical Recipes in Fortran 77. Cambridge University Press. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2001). Numerical Recipes in Fortran 77. Cambridge University Press.
31.
Zurück zum Zitat Gracheva, M.E., Aksimentiev, A., Leburton, J.-P., Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor, Nanotechnology 17, 3160–3165 (2006).CrossRef Gracheva, M.E., Aksimentiev, A., Leburton, J.-P., Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor, Nanotechnology 17, 3160–3165 (2006).CrossRef
32.
Zurück zum Zitat Vidal, J. , Gracheva, M.E., Leburton, J.-P., Electrically tunable solid-state silicon nanopore ion filter, Nanoscale Res. Lett. 2, 61–68 (2007).CrossRef Vidal, J. , Gracheva, M.E., Leburton, J.-P., Electrically tunable solid-state silicon nanopore ion filter, Nanoscale Res. Lett. 2, 61–68 (2007).CrossRef
33.
Zurück zum Zitat Geddes, L.A., Baker, L.E., Principles of Applied Biomedical Instrumentation, 3rd ed. New York, USA, Willey - Interscience Publication (1989). Geddes, L.A., Baker, L.E., Principles of Applied Biomedical Instrumentation, 3rd ed. New York, USA, Willey - Interscience Publication (1989).
34.
Zurück zum Zitat Bard, A.J., Faulkner, L.R., Electrochem. Meth., New York, USA, John Wiley & sons - Inter-science Publication (1980). Bard, A.J., Faulkner, L.R., Electrochem. Meth., New York, USA, John Wiley & sons - Inter-science Publication (1980).
35.
Zurück zum Zitat Martinoia, S., Massobrio, G., A behaviorial macromodel ofthe ISFET in Spice, Sensors and Actuators 62, 182–189 (2000).CrossRef Martinoia, S., Massobrio, G., A behaviorial macromodel ofthe ISFET in Spice, Sensors and Actuators 62, 182–189 (2000).CrossRef
36.
Zurück zum Zitat Leroux, A., Destine, J., Vanderheyden, B., Gracheva, M.E., Leburton, J.-P., SPICE-circuit simulation of the electrical response of semiconductor membrane to a single-stranded DNA translocating through a nanopore, to be published in the IEEE Transactions on Nanotechnology (2010). Leroux, A., Destine, J., Vanderheyden, B., Gracheva, M.E., Leburton, J.-P., SPICE-circuit simulation of the electrical response of semiconductor membrane to a single-stranded DNA translocating through a nanopore, to be published in the IEEE Transactions on Nanotechnology (2010).
37.
Zurück zum Zitat Kasianowicz, J.J., Nanopores: flossing with DNA, Nature Materials 3, 355–356 (2004).CrossRef Kasianowicz, J.J., Nanopores: flossing with DNA, Nature Materials 3, 355–356 (2004).CrossRef
38.
Zurück zum Zitat Muller, R.S., Kamins, T.I., Chan, M. (2003). Device electronics for integrated circuits. John Wiley and sons Inc. Muller, R.S., Kamins, T.I., Chan, M. (2003). Device electronics for integrated circuits. John Wiley and sons Inc.
Metadaten
Titel
Simulation of Electronic Sensing of Biomolecules in Translocation Through a Nanopore in a Semiconductor Membrane
verfasst von
Maria E. Gracheva
Amandine Leroux
Jacques Destiné
Jean-Pierre Leburton
Copyright-Jahr
2011
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-8252-0_7

Neuer Inhalt