Skip to main content
Erschienen in: Measurement Techniques 10/2021

29.01.2021

Simulation of Sensitive Element Found on Planar Mushroom-Shaped Metamaterial for Nondestructive Testing and Searching for Inhomogeneities in Technological Media

verfasst von: A. A. Yelizarov, A. A. Skuridin, E. A. Zakirova

Erschienen in: Measurement Techniques | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A computer model of a sensitive element on a planar mushroom-shaped metamaterial with Maltese cross-type cells is created. Results of a numerical experiment are presented. It is own that this type of electrodynamic structure may be used in nondestructive testing of the geometric and electro-physical parameters of technological media as well as in searching in these media for inhomogeneities relative to variations of the attenuation coefficient and relative to the resonant frequency of the sensitive element.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat D. F. Sievenpiper, High-Impedance Electromagnetic Surfaces: PhD Dissertation, Univ. of California, Los Angeles (1999). D. F. Sievenpiper, High-Impedance Electromagnetic Surfaces: PhD Dissertation, Univ. of California, Los Angeles (1999).
5.
Zurück zum Zitat Yu. A. Ilarionov, Calculation of Parameters of Crimped and Partially Filled Waveguides, Sov. Radio, Moscow (1980). Yu. A. Ilarionov, Calculation of Parameters of Crimped and Partially Filled Waveguides, Sov. Radio, Moscow (1980).
6.
Zurück zum Zitat A. A. Yelizarov and Yu. N. Pchel’nikov, Radiowave Elements of Technological Instruments and Devices with the Use of Electrodynamic Delay-Time Systems, Radio i Svyaz, Moscow (2002). A. A. Yelizarov and Yu. N. Pchel’nikov, Radiowave Elements of Technological Instruments and Devices with the Use of Electrodynamic Delay-Time Systems, Radio i Svyaz, Moscow (2002).
8.
Zurück zum Zitat A. A. Yelizarov and E. A. Zakirova, Microband UHF Devices Based on Printed Boards with Multilayer Dielectric Substrates, Media-Publisher, Moscow (2016). A. A. Yelizarov and E. A. Zakirova, Microband UHF Devices Based on Printed Boards with Multilayer Dielectric Substrates, Media-Publisher, Moscow (2016).
9.
Zurück zum Zitat A. S. Kukharenko and A. A. Yelizarov, Practical Application of Metamaterials in Structures of UHF Devices, LAP Lambert Academic Publishing, Saarbrucken (2016). A. S. Kukharenko and A. A. Yelizarov, Practical Application of Metamaterials in Structures of UHF Devices, LAP Lambert Academic Publishing, Saarbrucken (2016).
10.
Zurück zum Zitat A. S. Kukharenko and A. A. Yelizarov, “Analysis of the physical features of metamaterials and of frequency-selective UHF devices based on metamaterials,” T-Comm: Telekom. Transp., 9, No. 5, 36–41 (2015). A. S. Kukharenko and A. A. Yelizarov, “Analysis of the physical features of metamaterials and of frequency-selective UHF devices based on metamaterials,” T-Comm: Telekom. Transp., 9, No. 5, 36–41 (2015).
11.
Zurück zum Zitat A. A. Yelizarov, I. V. Nazarov, and A. A. Skuridin, “Computer simulations of multiband waveguide fi lter on modulated metasurface,” in: Proc. 14th Europ. Conf. Antennas and Propagation (EuCAP 2020), Copenhagen, Denmark (2020), pp. 1–4. A. A. Yelizarov, I. V. Nazarov, and A. A. Skuridin, “Computer simulations of multiband waveguide fi lter on modulated metasurface,” in: Proc. 14th Europ. Conf. Antennas and Propagation (EuCAP 2020), Copenhagen, Denmark (2020), pp. 1–4.
14.
Zurück zum Zitat A. A. Yelizarov and A. S. Kukharenko, “Metamaterial-based frequenc-selective surface with a band gap electronic adjustment,” in: Proc. 2016 German Microwave Conf., IMATech e.V. Ratingen, Bochum (2016), pp. 271–273.CrossRef A. A. Yelizarov and A. S. Kukharenko, “Metamaterial-based frequenc-selective surface with a band gap electronic adjustment,” in: Proc. 2016 German Microwave Conf., IMATech e.V. Ratingen, Bochum (2016), pp. 271–273.CrossRef
15.
Zurück zum Zitat B. Munk, Frequency-Selective Surfaces: Theory and Design, J. Wiley & Sons, New York (2000).CrossRef B. Munk, Frequency-Selective Surfaces: Theory and Design, J. Wiley & Sons, New York (2000).CrossRef
16.
Zurück zum Zitat A. A. Yelizarov, A. S. Kukharenko, and A. A. Skuridin, “Metamaterial-based sensor for measurements of physical quantities and parameters of technological processes,” in: Proc. 12th Int. Conf. on Artifi cial Materials for Novel Wave Phenomena (METAMATERIALS 2018), Espoo, Finland (2018), pp. 448–450. A. A. Yelizarov, A. S. Kukharenko, and A. A. Skuridin, “Metamaterial-based sensor for measurements of physical quantities and parameters of technological processes,” in: Proc. 12th Int. Conf. on Artifi cial Materials for Novel Wave Phenomena (METAMATERIALS 2018), Espoo, Finland (2018), pp. 448–450.
17.
Zurück zum Zitat A. A. Yelizarov, I. V. Nazarov, A. S. Kukharenko, and A. A. Skuridin, “Investigation of microwave sensor on the planar mushroom-shaped metamaterial,” in: Proc. 18th Int. Vacuum Electronic Conf. (IVEC-2017), London (2017), p. 1–2. A. A. Yelizarov, I. V. Nazarov, A. S. Kukharenko, and A. A. Skuridin, “Investigation of microwave sensor on the planar mushroom-shaped metamaterial,” in: Proc. 18th Int. Vacuum Electronic Conf. (IVEC-2017), London (2017), p. 1–2.
18.
Zurück zum Zitat A. S. Kukharenko, A. A. Yelizarov, A. A. Skuridin, and M. I. Zakirova, Patent No. 170 145 RF, Izobret. Polezn. Modeli, No. 11 (2017). A. S. Kukharenko, A. A. Yelizarov, A. A. Skuridin, and M. I. Zakirova, Patent No. 170 145 RF, Izobret. Polezn. Modeli, No. 11 (2017).
19.
Zurück zum Zitat A. A. Yelizarov and A. S. Kukharenko, Patent No. 2 585 178 RF, Izobret. Polezn. Modeli, No. 15, 1–9 (2016). A. A. Yelizarov and A. S. Kukharenko, Patent No. 2 585 178 RF, Izobret. Polezn. Modeli, No. 15, 1–9 (2016).
20.
Zurück zum Zitat A. A. Yelizarov, O. E. Malinova, T. V. Sidorova, A. A. Skuridin, Certif. State Registr. Comp. Progr. No. 2019613769, Izobret. Polezn. Modeli, No. 4, 1–2 (2019). A. A. Yelizarov, O. E. Malinova, T. V. Sidorova, A. A. Skuridin, Certif. State Registr. Comp. Progr. No. 2019613769, Izobret. Polezn. Modeli, No. 4, 1–2 (2019).
21.
Zurück zum Zitat A. A. Yelizarov, I. V. Nazarov, A. A. Skuridin, and E. A. Zakirova, “Computer model of frequency-selective surface on mushroom-shaped metamaterial,” in: Proc. Systems of Signal Synchronization, Generating, and Processing in Telecommunications (SYNCHROINFO 2020), IEEE Conf. Rec. #49631, Svetlogorsk, Russia (2020), pp. 1–4. A. A. Yelizarov, I. V. Nazarov, A. A. Skuridin, and E. A. Zakirova, “Computer model of frequency-selective surface on mushroom-shaped metamaterial,” in: Proc. Systems of Signal Synchronization, Generating, and Processing in Telecommunications (SYNCHROINFO 2020), IEEE Conf. Rec. #49631, Svetlogorsk, Russia (2020), pp. 1–4.
Metadaten
Titel
Simulation of Sensitive Element Found on Planar Mushroom-Shaped Metamaterial for Nondestructive Testing and Searching for Inhomogeneities in Technological Media
verfasst von
A. A. Yelizarov
A. A. Skuridin
E. A. Zakirova
Publikationsdatum
29.01.2021
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 10/2021
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-021-01860-1

Weitere Artikel der Ausgabe 10/2021

Measurement Techniques 10/2021 Zur Ausgabe