Skip to main content
Erschienen in: Metal Science and Heat Treatment 3-4/2016

28.07.2016 | SIMULATION

Simulation of the Elastoplastic Behavior of Grade-4 Ti in the ECAP-C Process

verfasst von: R. G. Chembarisova, I. V. Aleksandrov

Erschienen in: Metal Science and Heat Treatment | Ausgabe 3-4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Amodel of the elastoplastic behavior of commercial titanium is developed with allowance for the evolution of the microstructure of Ti Grade-4 Ti under equal channel angular pressing with application of the Conform process. The evolution of the mean dislocation density, of the dislocation density in the body and on the boundaries of grains, and of the density of mobile dislocations is studied. The concentrations of strain-induced vacancies, the speeds of gliding dislocations, and the angles of off-orientation between neighbor grains are determined, which widens substantially the understanding of the mechanisms of the elastoplastic behavior of Ti Grade-4 under severe plastic deformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. M. Brunette, P. Tengvall, and M. Textor, Titanium in Medicine, Springer, Berlin, Heidelberg, New York (2001), p. 1027.CrossRef D. M. Brunette, P. Tengvall, and M. Textor, Titanium in Medicine, Springer, Berlin, Heidelberg, New York (2001), p. 1027.CrossRef
2.
Zurück zum Zitat R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructure materials from severe plastic deformation,” Prog. Mater. Sci., 45, 103 – 189 (2000).CrossRef R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructure materials from severe plastic deformation,” Prog. Mater. Sci., 45, 103 – 189 (2000).CrossRef
3.
Zurück zum Zitat G. G. Yapici, I. Karamen, and H. J. Maier, “Mechanical flow anisotropy in severely deformed pure titanium,” Mater. Sci. Eng. A, 434, 294 – 302 (2006).CrossRef G. G. Yapici, I. Karamen, and H. J. Maier, “Mechanical flow anisotropy in severely deformed pure titanium,” Mater. Sci. Eng. A, 434, 294 – 302 (2006).CrossRef
4.
Zurück zum Zitat J. Gubicza, Zs. Fogarassy, Gy Krallics, et al., “Microstructure and mechanical behavior of ultrafine-grained titanium,” Mater. Sci. Forum, 589, 99 – 104 (2008).CrossRef J. Gubicza, Zs. Fogarassy, Gy Krallics, et al., “Microstructure and mechanical behavior of ultrafine-grained titanium,” Mater. Sci. Forum, 589, 99 – 104 (2008).CrossRef
5.
Zurück zum Zitat V. V. Stolyarov, L. Zeipper, B. Mingler, and M. Zehetbauer, “Influence of post-deformation on CP-Ti processed by equal channel angular pressing,” Mater. Sci. Eng. A, 476, 98 – 105 (2008).CrossRef V. V. Stolyarov, L. Zeipper, B. Mingler, and M. Zehetbauer, “Influence of post-deformation on CP-Ti processed by equal channel angular pressing,” Mater. Sci. Eng. A, 476, 98 – 105 (2008).CrossRef
6.
Zurück zum Zitat D. V. Gunderov, A. V. Polyakov, I. P. Semenova, et al., “Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing,” Mater. Sci. Eng. A, 562, 128 – 136 (2013).CrossRef D. V. Gunderov, A. V. Polyakov, I. P. Semenova, et al., “Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing,” Mater. Sci. Eng. A, 562, 128 – 136 (2013).CrossRef
7.
Zurück zum Zitat V. M. Segal, V. I. Reznikov, A. E. Drobyshevski, and V. I. Kopylov, “Plastic treatment of metals by simple shear,” Russian Metallurgy, 1(1), 99 – 105 (1981). V. M. Segal, V. I. Reznikov, A. E. Drobyshevski, and V. I. Kopylov, “Plastic treatment of metals by simple shear,” Russian Metallurgy, 1(1), 99 – 105 (1981).
8.
Zurück zum Zitat V. M. Segal, “Materials processing by simple shear,” Mater. Sci. Eng. A, 197, 157 – 164 (1995).CrossRef V. M. Segal, “Materials processing by simple shear,” Mater. Sci. Eng. A, 197, 157 – 164 (1995).CrossRef
9.
Zurück zum Zitat C. P. Chang, P. L. Sun, and P. W. Kao, “Deformation induced grain boundaries in commercially pure aluminum,” Acta Mater., 48, 3377 – 3385 (2000).CrossRef C. P. Chang, P. L. Sun, and P. W. Kao, “Deformation induced grain boundaries in commercially pure aluminum,” Acta Mater., 48, 3377 – 3385 (2000).CrossRef
10.
Zurück zum Zitat D. H. Shin, B. C. Kim, K.-T. Park, and W. Y. Choo, “Microstructural changes in equal channel angular pressed low carbon steel by static annealing,” Acta Mater., 48, 3245 – 3252 (2000).CrossRef D. H. Shin, B. C. Kim, K.-T. Park, and W. Y. Choo, “Microstructural changes in equal channel angular pressed low carbon steel by static annealing,” Acta Mater., 48, 3245 – 3252 (2000).CrossRef
11.
Zurück zum Zitat R. Goforth, K. Hartwing, and L. Cornwell, Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers, Dordrecht (2000), pp. 3 – 12.CrossRef R. Goforth, K. Hartwing, and L. Cornwell, Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers, Dordrecht (2000), pp. 3 – 12.CrossRef
12.
Zurück zum Zitat V. Stolyarow, Y. Zhu, T. Lowe, and R. Valiev, “Microstructure and properties of pure Ti processed by ECAP and cold extrusion,” Mater. Sci. Eng. A, 303, 82 – 89 (2001).CrossRef V. Stolyarow, Y. Zhu, T. Lowe, and R. Valiev, “Microstructure and properties of pure Ti processed by ECAP and cold extrusion,” Mater. Sci. Eng. A, 303, 82 – 89 (2001).CrossRef
13.
Zurück zum Zitat A. Yamashita, Z. Horita, and T. Langdon, “Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation,” Mater. Sci. Eng. A, 300, 142 – 147 (2001).CrossRef A. Yamashita, Z. Horita, and T. Langdon, “Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation,” Mater. Sci. Eng. A, 300, 142 – 147 (2001).CrossRef
14.
Zurück zum Zitat N. Saito, M. Mabuchi, M. Nakanishi, et al., “Microstructure and mechanical properties of SUS304L stainless steel processed by equal channel angular extrusion,” J. Mater. Sci. Lett., 19, 2091 – 2093 (2000).CrossRef N. Saito, M. Mabuchi, M. Nakanishi, et al., “Microstructure and mechanical properties of SUS304L stainless steel processed by equal channel angular extrusion,” J. Mater. Sci. Lett., 19, 2091 – 2093 (2000).CrossRef
15.
Zurück zum Zitat L. Dupuy, J. Blandin, and E. Rauch, “Structural and mechanical properties in AA5083 processed by ECA,” Mater. Sci. Technol., 16, 1256 – 1258 (2000).CrossRef L. Dupuy, J. Blandin, and E. Rauch, “Structural and mechanical properties in AA5083 processed by ECA,” Mater. Sci. Technol., 16, 1256 – 1258 (2000).CrossRef
16.
Zurück zum Zitat K. Nakashima, Z. Horita, M. Nemoto, and T. G. Langdon, “Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing,” Acta Mater., 46, 1589 – 1599 (1998).CrossRef K. Nakashima, Z. Horita, M. Nemoto, and T. G. Langdon, “Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing,” Acta Mater., 46, 1589 – 1599 (1998).CrossRef
17.
Zurück zum Zitat W. Huang, L. Chang, P. Kao, and C. Chang, “Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion,” Mater. Sci. Eng. A, 307, 113 – 118 (2001).CrossRef W. Huang, L. Chang, P. Kao, and C. Chang, “Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion,” Mater. Sci. Eng. A, 307, 113 – 118 (2001).CrossRef
18.
Zurück zum Zitat Y. Z. Zhu, T. G. Langdon, R. S. Mishra, et al., in: Proc. Second Int. Symp. on Ultrafine Grained Mater., TMS Annual Meeting, Seattle (2002), 683 p.CrossRef Y. Z. Zhu, T. G. Langdon, R. S. Mishra, et al., in: Proc. Second Int. Symp. on Ultrafine Grained Mater., TMS Annual Meeting, Seattle (2002), 683 p.CrossRef
19.
Zurück zum Zitat Y. Iwahashi, Z. Horita, M. Nemoto, and T. Langdon, “The process of grain refinement in equal-channel angular pressing,” Acta Mater., 46, 3317 – 3331 (1998).CrossRef Y. Iwahashi, Z. Horita, M. Nemoto, and T. Langdon, “The process of grain refinement in equal-channel angular pressing,” Acta Mater., 46, 3317 – 3331 (1998).CrossRef
20.
Zurück zum Zitat Y. Zhu and T. Lowe, “Observations and issues on mechanisms of grain refinement during ECAP process,” Mater. Sci. Eng. A, 291, 46 – 53 (2000).CrossRef Y. Zhu and T. Lowe, “Observations and issues on mechanisms of grain refinement during ECAP process,” Mater. Sci. Eng. A, 291, 46 – 53 (2000).CrossRef
21.
Zurück zum Zitat V. M. Pinyugzhanin, “The effect of temperature and number of the ECAP passes on microstructure of the alloy AZ31,” Fundam. Invest., No. 9 (part 2), 437 – 441 (2012). V. M. Pinyugzhanin, “The effect of temperature and number of the ECAP passes on microstructure of the alloy AZ31,” Fundam. Invest., No. 9 (part 2), 437 – 441 (2012).
22.
Zurück zum Zitat Y. Iwahashi, J.Wang, Z. Horita, et al., “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scr. Mater., 35, 143 – 146 (1996).CrossRef Y. Iwahashi, J.Wang, Z. Horita, et al., “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scr. Mater., 35, 143 – 146 (1996).CrossRef
23.
Zurück zum Zitat H. S. Kim, “Finite element analysis of deformation behavior of metals during equal channel multi-angular pressing,” Mater. Sci. Eng. A, 328, 317 (2002).CrossRef H. S. Kim, “Finite element analysis of deformation behavior of metals during equal channel multi-angular pressing,” Mater. Sci. Eng. A, 328, 317 (2002).CrossRef
24.
Zurück zum Zitat H. S. Kim, “Finite element analysis of equal channel angular pressing using a round corner die,” Mater. Sci. Eng. A., 315, 122 – 128 (2001).CrossRef H. S. Kim, “Finite element analysis of equal channel angular pressing using a round corner die,” Mater. Sci. Eng. A., 315, 122 – 128 (2001).CrossRef
25.
Zurück zum Zitat H. S. Kim, M. H. Seo, and S. I. Hong, “On the die corner gap formation in equal channel angular pressing,” Mater. Sci. Eng. A, 291, 86 – 90 (2000).CrossRef H. S. Kim, M. H. Seo, and S. I. Hong, “On the die corner gap formation in equal channel angular pressing,” Mater. Sci. Eng. A, 291, 86 – 90 (2000).CrossRef
26.
Zurück zum Zitat J. Suh, H. Kim, J. Park, and J. Chang, “Finite element analysis of material flow in equal-channel angular pressing,” Scr. Mater., 44, 677 – 681 (2001).CrossRef J. Suh, H. Kim, J. Park, and J. Chang, “Finite element analysis of material flow in equal-channel angular pressing,” Scr. Mater., 44, 677 – 681 (2001).CrossRef
27.
Zurück zum Zitat S. L. Semiatin, D. P. Delo, and E. B. Shell, “The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion,” Acta Mater., 48, 1841 – 1851 (2000).CrossRef S. L. Semiatin, D. P. Delo, and E. B. Shell, “The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion,” Acta Mater., 48, 1841 – 1851 (2000).CrossRef
28.
Zurück zum Zitat S. Ch. Baik, Y. Estrin, H. S. Kim, and R. J. Hellmig, “Dislocation density-based modeling of aluminum under equal channel angular pressing,” Mater. Sci. Eng. A, 351, 86 – 97 (2003).CrossRef S. Ch. Baik, Y. Estrin, H. S. Kim, and R. J. Hellmig, “Dislocation density-based modeling of aluminum under equal channel angular pressing,” Mater. Sci. Eng. A, 351, 86 – 97 (2003).CrossRef
29.
Zurück zum Zitat D. V. Sivukhin, A General Course of Physics, Vol. 1. Mechanics [in Russian], Izd. MFTI, Fizmatgiz, Moscow (2005), 560 p. D. V. Sivukhin, A General Course of Physics, Vol. 1. Mechanics [in Russian], Izd. MFTI, Fizmatgiz, Moscow (2005), 560 p.
30.
Zurück zum Zitat V. M. Segal, V. I. Reznikov, V. I. Kopyilov, et al., Processes of Plastic Structure Development of Metals [in Russian], Sci. and Tech., Minsk (1994), 250 p. V. M. Segal, V. I. Reznikov, V. I. Kopyilov, et al., Processes of Plastic Structure Development of Metals [in Russian], Sci. and Tech., Minsk (1994), 250 p.
31.
Zurück zum Zitat J. Taylor, “Dislocation dynamics and dynamic yielding,” J. Appl. Phys., 36(10), 3146 – 3150 (1965).CrossRef J. Taylor, “Dislocation dynamics and dynamic yielding,” J. Appl. Phys., 36(10), 3146 – 3150 (1965).CrossRef
32.
Zurück zum Zitat N. I. Bezukhov, Fundamentals of the Theory of Elasticity, Plasticity and Creep [in Russian], Vysshaya Shkola, Moscow (1968), 512 p. N. I. Bezukhov, Fundamentals of the Theory of Elasticity, Plasticity and Creep [in Russian], Vysshaya Shkola, Moscow (1968), 512 p.
33.
Zurück zum Zitat J. Gilman, “Dislocation dynamics and the response of materials,” J. Appl. Mech. Rev., 21(8), 767 – 783 (1968). J. Gilman, “Dislocation dynamics and the response of materials,” J. Appl. Mech. Rev., 21(8), 767 – 783 (1968).
34.
Zurück zum Zitat Y. Estrin, L. S. Toth, A. Molinari, and Y. Brechet, “A dislocation-based model for all hardening stages in large strain deformation,” Acta Mater., 46, 5509 – 5522 (1998).CrossRef Y. Estrin, L. S. Toth, A. Molinari, and Y. Brechet, “A dislocation-based model for all hardening stages in large strain deformation,” Acta Mater., 46, 5509 – 5522 (1998).CrossRef
35.
Zurück zum Zitat L. S. Toth A. Molinari, and Y. Estrin, “Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model,” J. Eng. Mater. Technol., 124, 71 – 77 (2002).CrossRef L. S. Toth A. Molinari, and Y. Estrin, “Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model,” J. Eng. Mater. Technol., 124, 71 – 77 (2002).CrossRef
36.
Zurück zum Zitat M. Zehetbauer, “Cold work hardening in stages IV and V of fcc metals. II. Model fits and physical results,” Acta Mater., 41, 589 – 599 (1993).CrossRef M. Zehetbauer, “Cold work hardening in stages IV and V of fcc metals. II. Model fits and physical results,” Acta Mater., 41, 589 – 599 (1993).CrossRef
37.
Zurück zum Zitat I. V. Alexandrov and R. G. Chembarisova, “Development and application of the dislocation model for analysis of the microstructure evolution and deformation behavior of metals subjected to severe plastic deformation,” Rev. Adv. Mater. Sci., 16(1–2), 51 – 72 (2007). I. V. Alexandrov and R. G. Chembarisova, “Development and application of the dislocation model for analysis of the microstructure evolution and deformation behavior of metals subjected to severe plastic deformation,” Rev. Adv. Mater. Sci., 16(1–2), 51 – 72 (2007).
38.
Zurück zum Zitat L. F. Zeipper, M. J. Zehetbauer, and Ch. Holzleithner, “Defect based micromechanical modeling and simulation of nanoSPD CP Ti in post-deformation,” Mater. Sci. Eng. A, 410 – 411, 217 – 221 (2005).CrossRef L. F. Zeipper, M. J. Zehetbauer, and Ch. Holzleithner, “Defect based micromechanical modeling and simulation of nanoSPD CP Ti in post-deformation,” Mater. Sci. Eng. A, 410 – 411, 217 – 221 (2005).CrossRef
39.
Zurück zum Zitat G. T. Gray, “III. Influence of high strain rate and temperature on the mechanical behavior of Ni-, Fe-, and Ti-based aluminides,” in: W. O. Soboyejo, T. S. Srivastan, and H. L. Fraser (eds.), Deformation and Fracture of Ordered Intermetallic Materials, Minerals, Metals Mater. Soc., Warrendale, PA (1996), pp. 57 – 73. G. T. Gray, “III. Influence of high strain rate and temperature on the mechanical behavior of Ni-, Fe-, and Ti-based aluminides,” in: W. O. Soboyejo, T. S. Srivastan, and H. L. Fraser (eds.), Deformation and Fracture of Ordered Intermetallic Materials, Minerals, Metals Mater. Soc., Warrendale, PA (1996), pp. 57 – 73.
40.
Zurück zum Zitat G. T. Gray, III. High-strain-rate deformation: mechanical behavior and deformation substructures induced,” Ann. Rev. Mater. Res., 42, 285 – 303 (2012).CrossRef G. T. Gray, III. High-strain-rate deformation: mechanical behavior and deformation substructures induced,” Ann. Rev. Mater. Res., 42, 285 – 303 (2012).CrossRef
41.
Zurück zum Zitat M. A. Meyers, O. Vohringer, and V. A. Lubarda, “The onset of twinning in metals: a constructive description,” Acta Mater., 49, 4025 – 4039 (2001).CrossRef M. A. Meyers, O. Vohringer, and V. A. Lubarda, “The onset of twinning in metals: a constructive description,” Acta Mater., 49, 4025 – 4039 (2001).CrossRef
42.
Zurück zum Zitat G. T. Gray, III. “Influence of strain rate and temperature on the structure, properties, and behavior of high-purity titanium,” J. Phys. IV, 7, 3 – 423 (1997). G. T. Gray, III. “Influence of strain rate and temperature on the structure, properties, and behavior of high-purity titanium,” J. Phys. IV, 7, 3 – 423 (1997).
43.
Zurück zum Zitat H. Conrad, M. Doner, and B. de Meester, in: R. I. Jaffer and H. M. Burte (eds.), Titanium Science and Technology, Plenum Press, New York (1973), 969 p. H. Conrad, M. Doner, and B. de Meester, in: R. I. Jaffer and H. M. Burte (eds.), Titanium Science and Technology, Plenum Press, New York (1973), 969 p.
44.
Zurück zum Zitat S. Nemat-Nasser, W. G. Guo, and J. Y. Cheng, “Mechanical properties and deformation mechanisms of a commercially pure titanium,” Acta Mater., 47, 3705 – 3720 (1999).CrossRef S. Nemat-Nasser, W. G. Guo, and J. Y. Cheng, “Mechanical properties and deformation mechanisms of a commercially pure titanium,” Acta Mater., 47, 3705 – 3720 (1999).CrossRef
45.
Zurück zum Zitat I. V. Alexandrov, R. G. Chembarisova, and V. D. Sitdikov, “Analysis of the deformation behavior of CP Ti with different grain sizes by means of kinetic modeling,” Achiev. Metall. Mater., 53, Issue I, 11 – 16 (2008). I. V. Alexandrov, R. G. Chembarisova, and V. D. Sitdikov, “Analysis of the deformation behavior of CP Ti with different grain sizes by means of kinetic modeling,” Achiev. Metall. Mater., 53, Issue I, 11 – 16 (2008).
46.
Zurück zum Zitat E. Schafler, A. Dubravina, and Z. Kovacs, “Defect characterization of equal channel angular pressed Cu by selective annealing treatment,” in: Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe (eds.), Ultrafine Grained Materials II, TMS (the Minerals and Materials Soc.) (2002), pp. 605 – 613. E. Schafler, A. Dubravina, and Z. Kovacs, “Defect characterization of equal channel angular pressed Cu by selective annealing treatment,” in: Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe (eds.), Ultrafine Grained Materials II, TMS (the Minerals and Materials Soc.) (2002), pp. 605 – 613.
47.
Zurück zum Zitat M. J. Zehetbauer, H. P. Strwe, A. Vorhauer, et al., “The role of hydrostatic pressure in severe plastic deformation,” Adv. Eng. Mater., 5(5), 330 – 337 (2003).CrossRef M. J. Zehetbauer, H. P. Strwe, A. Vorhauer, et al., “The role of hydrostatic pressure in severe plastic deformation,” Adv. Eng. Mater., 5(5), 330 – 337 (2003).CrossRef
48.
Zurück zum Zitat A. Belyakov, T. Sakai, H. Miura, and K. Tsuzake, “Grain refinement in copper under large strain deformation,” Philos. Mag. A, 81, 2629 – 2643 (2001).CrossRef A. Belyakov, T. Sakai, H. Miura, and K. Tsuzake, “Grain refinement in copper under large strain deformation,” Philos. Mag. A, 81, 2629 – 2643 (2001).CrossRef
Metadaten
Titel
Simulation of the Elastoplastic Behavior of Grade-4 Ti in the ECAP-C Process
verfasst von
R. G. Chembarisova
I. V. Aleksandrov
Publikationsdatum
28.07.2016
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 3-4/2016
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-016-9996-5

Weitere Artikel der Ausgabe 3-4/2016

Metal Science and Heat Treatment 3-4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.