Skip to main content
Erschienen in: Metallurgist 9-10/2023

25.02.2023

Simulation of the Thermal Regime of Semi-Continuous Casting of Aluminum Alloy Ingots

verfasst von: A. I. Bezrukikh, A. A. Iliin, V. A. Matyushentsev, I. L. Konstantinov, D. N. Bondarenko, N. A. Stepanenko, P. O. Yuryev, Yu.N. Mansurov, Yu.V. Baykovskiy

Erschienen in: Metallurgist | Ausgabe 9-10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the ANSYS Fluent program, a computer simulation was performed for the production of ingots from aluminum alloy 5052 at a semi-continuous casting plant (SCCP). This method analyzed the nature of the melt temperature distribution in the metal path with two types of refractory coatings and estimated the heat loss during the melt passage from the mixer to the mold of the casting machine. The findings reveal that during the experimental verification of the casting of ingots, the results of the direct temperature measurements differed by no more than 2%–3% from the temperatures obtained by modeling, and the replacement of metal path cartridges made of refractory concrete with a density of 2090 kg/m3 for concrete with a density of 1300 kg/m3 reduced heat losses during the casting of ingots on the SCCP and reduced the temperature of the start of casting of alloy 5052 by 45°C, decreasing the hydrogen concentration in castings from 0.18–0.19 to 0.15 cm3/100 g.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. I. Napalkov, V. F. Frolov, V. N. Baranov, et al., Melting and Casting of Aluminum Alloys, Monograph, Sib. Fed. Univ., Krasnoyarsk (2020), pp. 577–586. V. I. Napalkov, V. F. Frolov, V. N. Baranov, et al., Melting and Casting of Aluminum Alloys, Monograph, Sib. Fed. Univ., Krasnoyarsk (2020), pp. 577–586.
6.
Zurück zum Zitat GOST 4784–2019, Aluminum and Wrought Aluminum Alloys. Grades, Standartinform, Moscow (2019). GOST 4784–2019, Aluminum and Wrought Aluminum Alloys. Grades, Standartinform, Moscow (2019).
7.
Zurück zum Zitat Mark Vincent, Patent US9845270B2, CPC B22C1/00, Castable Refractory Material, application 15/117684; 03/27/2015; publ. 12/19/2017. Mark Vincent, Patent US9845270B2, CPC B22C1/00, Castable Refractory Material, application 15/117684; 03/27/2015; publ. 12/19/2017.
8.
Zurück zum Zitat Liu Chao (CN), Patent CN1186286C, Cl. C04B14/38, Ceramic Fiber Thermal-Insulating Boara and Making Method Thereof, submitted 02120854.9; 06/06/2002; published 01/26/2005. Liu Chao (CN), Patent CN1186286C, Cl. C04B14/38, Ceramic Fiber Thermal-Insulating Boara and Making Method Thereof, submitted 02120854.9; 06/06/2002; published 01/26/2005.
10.
Zurück zum Zitat 10 D. G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, New York, 185–187 (2008).CrossRef 10 D. G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, New York, 185–187 (2008).CrossRef
11.
Zurück zum Zitat G. S. Makarov, Ingots from Aluminum Alloys with Magnesium and Silicon for Pressing. Basics of Production [in Russian], Intermet Engineering, Moscow (2011). G. S. Makarov, Ingots from Aluminum Alloys with Magnesium and Silicon for Pressing. Basics of Production [in Russian], Intermet Engineering, Moscow (2011).
12.
Zurück zum Zitat M. Jolly and L. Katgerman, “Modeling of defects in aluminum cast products,” Prog. Mater. Sci., 123, No. 1, 100824 (2022). M. Jolly and L. Katgerman, “Modeling of defects in aluminum cast products,” Prog. Mater. Sci., 123, No. 1, 100824 (2022).
13.
Zurück zum Zitat D. G. Eskin, J. F. Grandfield, and I. F. Bainbridge, Direct-Chill Casting of Light Alloys, Science and Technology, John Willey & Sons, 46–48 (2013). D. G. Eskin, J. F. Grandfield, and I. F. Bainbridge, Direct-Chill Casting of Light Alloys, Science and Technology, John Willey & Sons, 46–48 (2013).
14.
Zurück zum Zitat V. I. Napalkov, S. V. Makhov, and A. V. Pozdnyakov, Modification of Aluminum Alloys [in Russian], monograph, MISiS, Moscow (2016). V. I. Napalkov, S. V. Makhov, and A. V. Pozdnyakov, Modification of Aluminum Alloys [in Russian], monograph, MISiS, Moscow (2016).
15.
Zurück zum Zitat V. I. Napalkov, A. E. Afanasiev, B. V. Ovsyannikov, et al., Structure and Defects of Aluminum Ingots and its Alloys [in Russian], monograph, SFU, Krasnoyarsk (2018). V. I. Napalkov, A. E. Afanasiev, B. V. Ovsyannikov, et al., Structure and Defects of Aluminum Ingots and its Alloys [in Russian], monograph, SFU, Krasnoyarsk (2018).
16.
Zurück zum Zitat S. R. Wagstaff, “Defects during DC casting and their remediation” [Electronic resource], Proceedings of the IX Intern. congr. “Non-Ferrous Metals and Minerals” (Krasnoyarsk, September 11–15, 2017), OOO NIC, Krasnoyarsk (2017). S. R. Wagstaff, “Defects during DC casting and their remediation” [Electronic resource], Proceedings of the IX Intern. congr. “Non-Ferrous Metals and Minerals” (Krasnoyarsk, September 11–15, 2017), OOO NIC, Krasnoyarsk (2017).
19.
Zurück zum Zitat E. G. Partyko, A. I. Bezrukikh, P. O. Yuryev, and V. V. Yanov, “Influence of the method of out-of-furnace melt treatment on hydrogen content in 5083 aluminum alloy,” Non-Ferr. Met., No. 2, 39–43 (2021). E. G. Partyko, A. I. Bezrukikh, P. O. Yuryev, and V. V. Yanov, “Influence of the method of out-of-furnace melt treatment on hydrogen content in 5083 aluminum alloy,” Non-Ferr. Met., No. 2, 39–43 (2021).
20.
Zurück zum Zitat E. Lunarska and O. Chernyaeva, “Effect of precipitations on hydrogen transport and hydrogen embrittlement of aluminum alloys,” Mater. Sci., 40, Is. 3, 399–407 (2004). E. Lunarska and O. Chernyaeva, “Effect of precipitations on hydrogen transport and hydrogen embrittlement of aluminum alloys,” Mater. Sci., 40, Is. 3, 399–407 (2004).
21.
Zurück zum Zitat S. V. Belyaev, B. P. Kulikov, V. N. Baranov, V. B. Deev, and E. M. Rakhuba, “Analysis of hydrogen content in the main stages of low-alloy aluminum alloy flat ingot manufacture,” Metallurgist, 61, No. 3-4, 325–329 (2017).CrossRef S. V. Belyaev, B. P. Kulikov, V. N. Baranov, V. B. Deev, and E. M. Rakhuba, “Analysis of hydrogen content in the main stages of low-alloy aluminum alloy flat ingot manufacture,” Metallurgist, 61, No. 3-4, 325–329 (2017).CrossRef
22.
Zurück zum Zitat J. Zeng, D. Li, H. He, et al., Relationship between Aluminum Oxide Inclusion and Porosity in Aluminum Melt, Proceedings of the 8th Pacific Rim Int. Congress on Advanced Materials and Processing, Springer, 1157–1162 (2013). J. Zeng, D. Li, H. He, et al., Relationship between Aluminum Oxide Inclusion and Porosity in Aluminum Melt, Proceedings of the 8th Pacific Rim Int. Congress on Advanced Materials and Processing, Springer, 1157–1162 (2013).
23.
Zurück zum Zitat P. A. Granger, “Microstructure control in ingots of aluminum alloys with an emphasis on grain refinement,” in: Essential Readings in Light Metals, 3, Cast Shop for Aluminum Production (2016), pp. 354–365. P. A. Granger, “Microstructure control in ingots of aluminum alloys with an emphasis on grain refinement,” in: Essential Readings in Light Metals, 3, Cast Shop for Aluminum Production (2016), pp. 354–365.
24.
Zurück zum Zitat Geoffrey K. Sigworth, “Fundamentals of solidification in aluminum castings,” Int. J. Met. Casting, 8, No. 1, 7–20 (2014). Geoffrey K. Sigworth, “Fundamentals of solidification in aluminum castings,” Int. J. Met. Casting, 8, No. 1, 7–20 (2014).
25.
Zurück zum Zitat N. A. Belov, Phase Composition of Aluminum Alloys [in Russian], MISiS, Moscow (2015). N. A. Belov, Phase Composition of Aluminum Alloys [in Russian], MISiS, Moscow (2015).
26.
Zurück zum Zitat V. D. Belov and V. B. Deev, “Ensuring the quality of castings in mechanical engineering,” Naukoyemk. Tekhnol. Mashinostr., No. 8 (50), 6–11 (2015). V. D. Belov and V. B. Deev, “Ensuring the quality of castings in mechanical engineering,” Naukoyemk. Tekhnol. Mashinostr., No. 8 (50), 6–11 (2015).
27.
Zurück zum Zitat Standard Test Procedure for Aluminum Alloy Grain Refiners: TP-1, the Aluminum Association Inc. Washington DC (2012). Standard Test Procedure for Aluminum Alloy Grain Refiners: TP-1, the Aluminum Association Inc. Washington DC (2012).
Metadaten
Titel
Simulation of the Thermal Regime of Semi-Continuous Casting of Aluminum Alloy Ingots
verfasst von
A. I. Bezrukikh
A. A. Iliin
V. A. Matyushentsev
I. L. Konstantinov
D. N. Bondarenko
N. A. Stepanenko
P. O. Yuryev
Yu.N. Mansurov
Yu.V. Baykovskiy
Publikationsdatum
25.02.2023
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 9-10/2023
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01444-0

Weitere Artikel der Ausgabe 9-10/2023

Metallurgist 9-10/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.