Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

Simulation Supported Manufacturing of Profiled Composite Parts Using the Braiding Technique

verfasst von: Jörg Dittmann, Matthieu Vinot, Peter Middendorf, Nathalie Toso, Heinz Voggenreiter

Erschienen in: Advances in Automotive Production Technology – Theory and Application

Verlag: Springer Berlin Heidelberg

share
TEILEN

Abstract

Composite materials have brought new development and sizing possibilities for structural components in transportation systems. Their high specific material properties are enabling weight reduction while increasing structural performance. On the downside, composite materials are generally related to high material and manufacturing costs and increased characterization efforts. Through the braiding technique, profiled structures can be manufactured in a highly automated and reproducible process. Moreover, braided composites can absorb more energy compared to their unidirectional or woven counterparts ( Falzon P. J., Herszberg I., Bannister M. K., Leong K. H.: Compression and Compression-after-impact Properties of 2-D Braided Carbon/Epoxy Composites. Proceedings of the First Australasian Congress on Applied Mechanics: ACAM-96, pp. 297 (1996).).
In this paper, we describe the development and validation of a simulation framework as sustainable alternative to material- and cost-intensive experimental testing. Our work aims at considering the influence of manufacturing effects and textile architecture on the material properties and therefore at increasing the reliability of structure sizing. As validation basis, flat specimens of biaxial and triaxial braided composites are first manufactured and tested under quasi-static loading. We then develop a digital twin of the braiding process and its material characterisation. Within this framework, the braid’s textile architecture is predicted with multiple finite-element simulations at the mesoscopic scale.
The numerical predictions show the strong influence of braiding angle and braiding core diameter on the textile architecture and consequently on the material properties. More particularly, crucial effects with negative impact on the mechanical properties (presence of gaps or yarn locking) are highlighted. On a pure numerical basis, we finally calculate the process window for braided structures, which links the process parameters to the resulting material properties. The present approach is a crucial step toward the reduction of experimental investigations in early development.
Literatur
1.
Zurück zum Zitat Falzon, P. J., Herszberg, I., Bannister, M. K., Leong, K. H.: Compression and Compression-after-impact Properties of 2-D Braided Carbon/Epoxy Composites. Proceedings of the First Australasian Congress on Applied Mechanics: ACAM-96, p. 297 (1996) Falzon, P. J., Herszberg, I., Bannister, M. K., Leong, K. H.: Compression and Compression-after-impact Properties of 2-D Braided Carbon/Epoxy Composites. Proceedings of the First Australasian Congress on Applied Mechanics: ACAM-96, p. 297 (1996)
2.
Zurück zum Zitat Dittmann, J., Middendorf, P., et al.: Der digitale Prototyp - Ganzheitlicher digitaler Prototyp im Leichtbau für die Großserienproduktion. ARENA2036 Reihe-DigitPro, Springer-Vieweg (2019) Dittmann, J., Middendorf, P., et al.: Der digitale Prototyp - Ganzheitlicher digitaler Prototyp im Leichtbau für die Großserienproduktion. ARENA2036 Reihe-DigitPro, Springer-Vieweg (2019)
3.
Zurück zum Zitat Raichle, A., Ritter, F., Vinot, M., Dittmann, J. et al.: Weiterentwicklung des Digitalen Prototyps zum Digitalen Fingerabdruck, ATZ-Magazin 03/2019, Springer-Vieweg (2019) Raichle, A., Ritter, F., Vinot, M., Dittmann, J. et al.: Weiterentwicklung des Digitalen Prototyps zum Digitalen Fingerabdruck, ATZ-Magazin 03/2019, Springer-Vieweg (2019)
4.
Zurück zum Zitat Blonk, H., Kool, A., Luske, B., Ponsioen, T., Scholten, J.: Methodology for assessing carbon footprints of horticultural products. Blonk Milieu Advies, S. 36–40 (2010) Blonk, H., Kool, A., Luske, B., Ponsioen, T., Scholten, J.: Methodology for assessing carbon footprints of horticultural products. Blonk Milieu Advies, S. 36–40 (2010)
5.
Zurück zum Zitat Böhler, P.: Einzelfadenbasierte Modellierung von textilen Preform-Prozessen. Dissertation Universität Stuttgart (2019) Böhler, P.: Einzelfadenbasierte Modellierung von textilen Preform-Prozessen. Dissertation Universität Stuttgart (2019)
6.
Zurück zum Zitat Czichos, R., Bareiro, O., Pickett, A. K., Middendorf, P., Gries, T.: Experimental and numerical studies of process variabilities in biaxial carbon fiber braids. International Journal of Material Forming (2020) Czichos, R., Bareiro, O., Pickett, A. K., Middendorf, P., Gries, T.: Experimental and numerical studies of process variabilities in biaxial carbon fiber braids. International Journal of Material Forming (2020)
7.
Zurück zum Zitat DYNAmore GmbH; Envyo® User’s Manual-DRAFT, Germany (2020) DYNAmore GmbH; Envyo® User’s Manual-DRAFT, Germany (2020)
8.
Zurück zum Zitat Whitcomb, J.D., Chapman, C.D., Tang, X.: Derivation of Boundary Conditions for Micromechanics Analyses of Plain and Satin Weave Composites. J. Compos. Mater. 34, 724–747 (2000) CrossRef Whitcomb, J.D., Chapman, C.D., Tang, X.: Derivation of Boundary Conditions for Micromechanics Analyses of Plain and Satin Weave Composites. J. Compos. Mater. 34, 724–747 (2000) CrossRef
9.
Zurück zum Zitat Wehrkamp-Richter, T., Pinho, S.T., Hinterhölzl, R.: Failure behaviour of triaxial braided composites, 17th European Conference on Composite Materials (2016) Wehrkamp-Richter, T., Pinho, S.T., Hinterhölzl, R.: Failure behaviour of triaxial braided composites, 17th European Conference on Composite Materials (2016)
10.
Zurück zum Zitat Kier, Z.T., Salvi, A., Theis, G., Waas, AM., Shahwan, K.: Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties, Composites: Part B 68, 288–299 (2014) Kier, Z.T., Salvi, A., Theis, G., Waas, AM., Shahwan, K.: Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties, Composites: Part B 68, 288–299 (2014)
11.
Zurück zum Zitat Lin, H., Brown, L.P., Long, A.C.: Modelling and Simulating Textile Structures using TexGen. Adv. Tex. Eng. 331, 44–47 (2011) Lin, H., Brown, L.P., Long, A.C.: Modelling and Simulating Textile Structures using TexGen. Adv. Tex. Eng. 331, 44–47 (2011)
12.
Zurück zum Zitat Pinho, S., Iannucci, L., Robinson, P.: Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation, Composites Part A: Applied Science and Manufacturing 37, 766–777 (2005) CrossRef Pinho, S., Iannucci, L., Robinson, P.: Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation, Composites Part A: Applied Science and Manufacturing 37, 766–777 (2005) CrossRef
13.
Zurück zum Zitat Kolling S., Haufe A., Feucht M., Du Bois P.A.: SAMP-1: A Semi-Analytical Model for the Simulation of Polymers, 4. LS-DYNA Anwenderforum (2005) Kolling S., Haufe A., Feucht M., Du Bois P.A.: SAMP-1: A Semi-Analytical Model for the Simulation of Polymers, 4. LS-DYNA Anwenderforum (2005)
14.
Zurück zum Zitat Pinho, S., Robinson, P., Iannucci, L.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66, 2069–2079 (2006) CrossRef Pinho, S., Robinson, P., Iannucci, L.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66, 2069–2079 (2006) CrossRef
15.
Zurück zum Zitat Birkefeld, K.: Virtuelle Optimierung von Geflecht-Preforms unter Berücksichtigung von Fertigungsaspekten. Universität Stuttgart, Institut für Flugzeugsbau (2013) Birkefeld, K.: Virtuelle Optimierung von Geflecht-Preforms unter Berücksichtigung von Fertigungsaspekten. Universität Stuttgart, Institut für Flugzeugsbau (2013)
Metadaten
Titel
Simulation Supported Manufacturing of Profiled Composite Parts Using the Braiding Technique
verfasst von
Jörg Dittmann
Matthieu Vinot
Peter Middendorf
Nathalie Toso
Heinz Voggenreiter
Copyright-Jahr
2021
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-62962-8_41

Premium Partner