Skip to main content

2017 | OriginalPaper | Buchkapitel

Simulation von Selective Laser Melting Prozessen

verfasst von : Henning Wessels, Matthias Gieseke, Christian Weißenfels, Stefan Kaierle, Peter Wriggers, Ludger Overmeyer

Erschienen in: Additive Manufacturing Quantifiziert

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Selective Laser Melting (SLM) ist ein additives Fertigungsverfahren, bei dem ein Metallpulverbett punktuell aufgeschmolzen wird. So können komplexe Geometrien hergestellt werden. Allerdings sind die vielfältigen, miteinander interagierenden physikalischen Prozesse nicht vollständig verstanden. In der Prozess-, Material- und Bauteilentwicklung sind daher zeit- und kostenintensive Experimente nötig. Die Entwicklung innovativer Simulationsverfahren aus dem Bereich der computergestützten Ingenieurswissenschaften bietet das Potential, den Einfluss der Prozessparameter auf die Bauteileigenschaften vorherzusagen. Eine genaue Vorhersage bietet die Möglichkeit einer individualisierten Prozessplanung, sodass Bauteileigenschaften nach Bedarf lokal angepasst werden können.
Der grundlegende Ablauf von SLM-Prozessen wird einleitend vorgestellt. Dem Leser wird ein Überblick über die auftretenden physikalischen Effekte bei SLM-Verfahren verschafft. Anschließend werden die thermomechanischen Gleichungen vorgestellt und grundsätzliche Aspekte der Modellierung von SLM-Prozessen diskutiert. Des Weiteren werden, ohne Anspruch auf Vollständigkeit, verschiedene existierende Simulationsansätze kurz vorgestellt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Buchbinder, D.: Selective Laser Melting von Aluminiumgusslegierungen. Aachen 2013. Buchbinder, D.: Selective Laser Melting von Aluminiumgusslegierungen. Aachen 2013.
[2]
Zurück zum Zitat Sehrt, J. T.: Möglichkeiten und Grenzen bei der generativen Herstellung metallischer Bauteile durch das Strahlschmelzverfahren. Aachen 2010. Sehrt, J. T.: Möglichkeiten und Grenzen bei der generativen Herstellung metallischer Bauteile durch das Strahlschmelzverfahren. Aachen 2010.
[3]
[4]
Zurück zum Zitat Gibson, I.; Rosen, D. W.; Stucker, B.: Additive manufacturing technologies. Rapid prototyping to direct digital manufacturing. New York 2010. CrossRef Gibson, I.; Rosen, D. W.; Stucker, B.: Additive manufacturing technologies. Rapid prototyping to direct digital manufacturing. New York 2010. CrossRef
[6]
Zurück zum Zitat Noelke, C.; Gieseke, M.; Kaierle, S.: Additive manufacturing in micro scale: Proceedings of the 32rd international conference on applications of lasers & electro-optics (ICALEO), Miami. Noelke, C.; Gieseke, M.; Kaierle, S.: Additive manufacturing in micro scale: Proceedings of the 32rd international conference on applications of lasers & electro-optics (ICALEO), Miami.
[7]
Zurück zum Zitat Smith, J.; Xiong, W.; Yan, W.; Lin, S.; Cheng, P.; Kafka, O. L.; Wagner, G. J.; Cao, J.; Liu, W. K.: Linking process, structure, property, and performance for metal-based additive manufacturing. Computational approaches with experimental support. In: Computational Mechanics 57 (2016) 4, S. 583–610. CrossRef Smith, J.; Xiong, W.; Yan, W.; Lin, S.; Cheng, P.; Kafka, O. L.; Wagner, G. J.; Cao, J.; Liu, W. K.: Linking process, structure, property, and performance for metal-based additive manufacturing. Computational approaches with experimental support. In: Computational Mechanics 57 (2016) 4, S. 583–610. CrossRef
[8]
Zurück zum Zitat Lachmayer, R.; Lippert, R. B.; Fahlbusch, T. (Hrsg.): 3D-DRUCK beleuchtet. Additive Manufacturing auf dem Weg in die Anwendung. Berlin Heidelberg 2016. Lachmayer, R.; Lippert, R. B.; Fahlbusch, T. (Hrsg.): 3D-DRUCK beleuchtet. Additive Manufacturing auf dem Weg in die Anwendung. Berlin Heidelberg 2016.
[9]
Zurück zum Zitat Khairallah, S. A.; Anderson, A.: Mesoscopic simulation model of selective laser melting of stainless steel powder. In: Journal of Materials Processing Technology 214 (2014) 11, S. 2627–36. CrossRef Khairallah, S. A.; Anderson, A.: Mesoscopic simulation model of selective laser melting of stainless steel powder. In: Journal of Materials Processing Technology 214 (2014) 11, S. 2627–36. CrossRef
[10]
Zurück zum Zitat Ganeriwala, R.; Zohdi, T. I.: A coupled discrete element-finite difference model of selective laser sintering. In: Granular Matter 18 (2016) 2. CrossRef Ganeriwala, R.; Zohdi, T. I.: A coupled discrete element-finite difference model of selective laser sintering. In: Granular Matter 18 (2016) 2. CrossRef
[11]
Zurück zum Zitat Smith, J.; Xiong, W.; Cao, J.; Liu, W. K.: Thermodynamically consistent microstructure prediction of additively manufactured materials. In: Computational Mechanics 57 (2016) 3, S. 359–70. CrossRef Smith, J.; Xiong, W.; Cao, J.; Liu, W. K.: Thermodynamically consistent microstructure prediction of additively manufactured materials. In: Computational Mechanics 57 (2016) 3, S. 359–70. CrossRef
[12]
Zurück zum Zitat Klassen, A.; Scharowsky, T.; Körner, C.: Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. In: Journal of Physics D: Applied Physics 47 (2014) 27, S. 275303. CrossRef Klassen, A.; Scharowsky, T.; Körner, C.: Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. In: Journal of Physics D: Applied Physics 47 (2014) 27, S. 275303. CrossRef
[13]
Zurück zum Zitat King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.: Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. In: Applied Physics Reviews 2 (2015) 4, S. 41304. CrossRef King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.: Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. In: Applied Physics Reviews 2 (2015) 4, S. 41304. CrossRef
[14]
Zurück zum Zitat Neugebauer, F.; Keller, N.; Feuerhahn, F.; Koehler, H.: Multi Scale FEM Simulation for Distortion Calculation in Additive Manufacturing of Hardening Stainless Steel. In: International Conference on Thermal Forming and Welding Distortion (2014). Neugebauer, F.; Keller, N.; Feuerhahn, F.; Koehler, H.: Multi Scale FEM Simulation for Distortion Calculation in Additive Manufacturing of Hardening Stainless Steel. In: International Conference on Thermal Forming and Welding Distortion (2014).
[15]
Zurück zum Zitat Hodge, N. E.; Ferencz, R. M.; Solberg, J. M.: Implementation of a thermomechanical model for the simulation of selective laser melting. In: Computational Mechanics 54 (2014) 1, S. 33–51. MathSciNetCrossRef Hodge, N. E.; Ferencz, R. M.; Solberg, J. M.: Implementation of a thermomechanical model for the simulation of selective laser melting. In: Computational Mechanics 54 (2014) 1, S. 33–51. MathSciNetCrossRef
[16]
Zurück zum Zitat Xu, H.; Keller, N.; Ploshikhin, V.; Prihodovsky, A.; Ilin, A.; Logvinov, R.; Kulikov, A.; Günther, B.; Windfelder, J.; Bechmann, F. (Hrsg.): Towards Improved Thermal Management of Laser Beam Melting Processes. Stuttgart 2014. Xu, H.; Keller, N.; Ploshikhin, V.; Prihodovsky, A.; Ilin, A.; Logvinov, R.; Kulikov, A.; Günther, B.; Windfelder, J.; Bechmann, F. (Hrsg.): Towards Improved Thermal Management of Laser Beam Melting Processes. Stuttgart 2014.
[17]
Zurück zum Zitat Yan, W.; Smith, J.; Ge, W.; Lin, F.; Liu, W. K.: Multiscale modeling of electron beam and substrate interaction. A new heat source model. In: Computational Mechanics 56 (2015) 2, S. 265–76. CrossRef Yan, W.; Smith, J.; Ge, W.; Lin, F.; Liu, W. K.: Multiscale modeling of electron beam and substrate interaction. A new heat source model. In: Computational Mechanics 56 (2015) 2, S. 265–76. CrossRef
[18]
Zurück zum Zitat Goldak, J.; Chakravarti, A.; Bibby, M.: A new finite element model for welding heat sources. In: Metallurgical Transactions B 15 (1984) 2, S. 299–305. CrossRef Goldak, J.; Chakravarti, A.; Bibby, M.: A new finite element model for welding heat sources. In: Metallurgical Transactions B 15 (1984) 2, S. 299–305. CrossRef
[19]
Zurück zum Zitat Gusarov, A. V.; Yadroitsev, I.; Bertrand, P.; Smurov, I.: Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting. In: Journal of Heat Transfer 131 (2009) 7, S. 72101. CrossRef Gusarov, A. V.; Yadroitsev, I.; Bertrand, P.; Smurov, I.: Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting. In: Journal of Heat Transfer 131 (2009) 7, S. 72101. CrossRef
[20]
Zurück zum Zitat Zohdi, T. I.: On the thermal response of a surface deposited laser-irradiated powder particle. In: CIRP Journal of Manufacturing Science and Technology 10 (2015), S. 77–83. Zohdi, T. I.: On the thermal response of a surface deposited laser-irradiated powder particle. In: CIRP Journal of Manufacturing Science and Technology 10 (2015), S. 77–83.
[21]
[22]
Zurück zum Zitat Bonacina, C.; Comini, G.; Fasano, A.; Primicerio, M.: Numerical solution of phase-change problems. In: International Journal of Heat and Mass Transfer 16 (1973) 10, S. 1825–32. CrossRef Bonacina, C.; Comini, G.; Fasano, A.; Primicerio, M.: Numerical solution of phase-change problems. In: International Journal of Heat and Mass Transfer 16 (1973) 10, S. 1825–32. CrossRef
[23]
Zurück zum Zitat Muhieddine, M.; Canot, É.; March, R.: Various Approaches for Solving Problems in Heat Conduction with Phase Change. In: International Journal on Finite Volumes (2009) 6, S. 66–85. MathSciNet Muhieddine, M.; Canot, É.; March, R.: Various Approaches for Solving Problems in Heat Conduction with Phase Change. In: International Journal on Finite Volumes (2009) 6, S. 66–85. MathSciNet
[24]
Zurück zum Zitat King, W.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. In: Materials Science and Technology 31 (2014) 8, S. 957–68. CrossRef King, W.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. In: Materials Science and Technology 31 (2014) 8, S. 957–68. CrossRef
Metadaten
Titel
Simulation von Selective Laser Melting Prozessen
verfasst von
Henning Wessels
Matthias Gieseke
Christian Weißenfels
Stefan Kaierle
Peter Wriggers
Ludger Overmeyer
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54113-5_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.