Skip to main content
Erschienen in:

29.03.2019

Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering

verfasst von: Kensuke Tanioka, Hiroshi Yadohisa

Erschienen in: Journal of Classification | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For multivariate categorical data, it is important to detect both clustering structures and low dimensions such that clusters are discriminated. This is because it is easy to interpret the features of clusters through the estimated low dimensions. It is sure that these existing methods for dimensional reduction clustering are useful to achieve such purpose; however, the interpretation sometimes becomes complicated due to the sign of the estimated parameters. Thus, we propose new dimensional reduction clustering with non-negativity constraints for all parameters. The proposed method has several advantages. First, when the features of clusters are interpreted, it is easier to interpret the clusters since effects of sign should not be considered. In addition, from the non-negativity and orthogonality constraints, the estimated components become perfect simple structure, which is interpretable descriptions. Second, we showed that the clustering results are not inferior to these existing methods through the simulations, although the constraints for the proposed method are strong.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering
verfasst von
Kensuke Tanioka
Hiroshi Yadohisa
Publikationsdatum
29.03.2019
Verlag
Springer US
Erschienen in
Journal of Classification / Ausgabe 1/2019
Print ISSN: 0176-4268
Elektronische ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-018-9284-8