Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 4/2016

21.05.2014

Simultaneous monitoring of mean vector and covariance matrix shifts in bivariate manufacturing processes using hybrid ensemble learning-based model

verfasst von: Wen-An Yang

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many manufacturing processes are multivariate in nature because the quality of a given product is determined by several interrelated quality characteristics. Recently, various machine learning techniques (e.g., artificial neural network, support vector machine, support vector regression or decision tree) have been used as an effective tool to monitor process mean vector and covariance matrix shifts. However, most of these machine learning techniques-based approaches for process mean vector and covariance matrix have been developed separately in literature with the other parameter assumed to be under control. Little attention has been given to simultaneous monitoring of process mean vector and covariance matrix shifts. In addition, these approaches cannot provide more detailed shift information, for example the shift magnitude, which would be greatly useful for quality practitioners to search the assignable causes that give rise to the out-of-control situation. This study presents a hybrid ensemble learning-based model for simultaneous monitoring of process mean vector and covariance matrix shifts. The numerical results indicate that the proposed model can effectively detect and recognize not only mean vector or covariance matrix shifts but also mixed situations where mean vector and covariance matrix shifts exist concurrently. Meanwhile, the magnitude of the shift of each of the shifted quality characteristics can be accurately quantified. Empirical comparisons also show that the proposed model performs better than other existing approaches in detecting mean vector and covariance matrix shifts, while also providing the capability of recognition of shift types and quantification of shift magnitudes. A demonstrative example is provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barghash, M. A., & Santarisi, N. S. (2004). Pattern recognition of control charts using artificial neural networks: Analyzing the effect of the training parameters. Journal of Intelligent Manufacturing, 15(5), 635–644.CrossRef Barghash, M. A., & Santarisi, N. S. (2004). Pattern recognition of control charts using artificial neural networks: Analyzing the effect of the training parameters. Journal of Intelligent Manufacturing, 15(5), 635–644.CrossRef
Zurück zum Zitat Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: An overview. Quality and Reliability Engineering International, 23(5), 517–543.CrossRef Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: An overview. Quality and Reliability Engineering International, 23(5), 517–543.CrossRef
Zurück zum Zitat Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Zurück zum Zitat Chen, G., Cheng, S. W., & Xie, H. (2005). A new multivariate control chart for monitoring both location and dispersion. Communications in Statistics-Simulation and Computation, 34(1), 203–217.CrossRef Chen, G., Cheng, S. W., & Xie, H. (2005). A new multivariate control chart for monitoring both location and dispersion. Communications in Statistics-Simulation and Computation, 34(1), 203–217.CrossRef
Zurück zum Zitat Chou, C.-Y., Liu, H.-R., Huang, X. R., & Chen, C.-H. (2002). Economic-statistical design of multivariate control charts using quality loss function. International Journal of Advanced Manufacturing Technology, 20(12), 916–924.CrossRef Chou, C.-Y., Liu, H.-R., Huang, X. R., & Chen, C.-H. (2002). Economic-statistical design of multivariate control charts using quality loss function. International Journal of Advanced Manufacturing Technology, 20(12), 916–924.CrossRef
Zurück zum Zitat Costa, A. F. B., & Machado, M. A. G. (2011). Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges. Produção, 21(2), 197–208. Costa, A. F. B., & Machado, M. A. G. (2011). Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges. Produção, 21(2), 197–208.
Zurück zum Zitat Chen, L.-H., & Wang, T.-Y. (2004). Artificial neural networks to classify mean shifts from multivariate \( \chi ^{2} \) chart signals. Computers and Industrial Engineering, 47(2–3), 195–205.CrossRef Chen, L.-H., & Wang, T.-Y. (2004). Artificial neural networks to classify mean shifts from multivariate \( \chi ^{2} \) chart signals. Computers and Industrial Engineering, 47(2–3), 195–205.CrossRef
Zurück zum Zitat Cheng, C.-S. (1997). A neural network approach for the analysis of control chart patterns. International Journal of Production Research, 35(3), 667–697.CrossRef Cheng, C.-S. (1997). A neural network approach for the analysis of control chart patterns. International Journal of Production Research, 35(3), 667–697.CrossRef
Zurück zum Zitat Cheng, C.-S., & Cheng, H.-P. (2008). Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines. Expert Systems with Applications, 35(1–2), 198–206.CrossRef Cheng, C.-S., & Cheng, H.-P. (2008). Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines. Expert Systems with Applications, 35(1–2), 198–206.CrossRef
Zurück zum Zitat Cheng, C.-S., Chen, P.-W., & Huang, K.-K. (2011). Estimating the shift size in the process mean with support vector regression and neural networks. Expert Systems with Applications, 38(8), 10624–10630.CrossRef Cheng, C.-S., Chen, P.-W., & Huang, K.-K. (2011). Estimating the shift size in the process mean with support vector regression and neural networks. Expert Systems with Applications, 38(8), 10624–10630.CrossRef
Zurück zum Zitat Cheng, C.-S., & Cheng, H.-P. (2011). Using neural networks to detect the bivariate process variance shifts pattern. Computers and Industrial Engineering, 60(2), 269–278.CrossRef Cheng, C.-S., & Cheng, H.-P. (2011). Using neural networks to detect the bivariate process variance shifts pattern. Computers and Industrial Engineering, 60(2), 269–278.CrossRef
Zurück zum Zitat Du, S. C., Lv, J., & Xi, L. F. (2012). On-line classifying process mean shifts in multivariate control charts based on multi-class support vector machines. International Journal of Production Research, 50(22), 6288–6310.CrossRef Du, S. C., Lv, J., & Xi, L. F. (2012). On-line classifying process mean shifts in multivariate control charts based on multi-class support vector machines. International Journal of Production Research, 50(22), 6288–6310.CrossRef
Zurück zum Zitat Dieterle, F., Müller-Hagedorn, S., Liebich, H. M., & Gauglitz, G. (2003). Urinary nucleosides as potential tumor markers evaluated by learning vector quantization. Artificial Intelligence in Medicine, 28(3), 265–279.CrossRef Dieterle, F., Müller-Hagedorn, S., Liebich, H. M., & Gauglitz, G. (2003). Urinary nucleosides as potential tumor markers evaluated by learning vector quantization. Artificial Intelligence in Medicine, 28(3), 265–279.CrossRef
Zurück zum Zitat Gu, N., Cao, Z. Q., Xie, L. J., et al. (2013). Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization. Journal of Intelligent Manufacturing, 24(6), 1241–1252.CrossRef Gu, N., Cao, Z. Q., Xie, L. J., et al. (2013). Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization. Journal of Intelligent Manufacturing, 24(6), 1241–1252.CrossRef
Zurück zum Zitat Guh, R.-S. (2007). On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International, 23(3), 367–385.CrossRef Guh, R.-S. (2007). On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International, 23(3), 367–385.CrossRef
Zurück zum Zitat Guh, R.-S., & Shiue, Y. R. (2008). An effective application of decision tree learning for online detection of mean shifts in multivariate control charts. Computers and Industrial Engineering, 55(2), 475–493.CrossRef Guh, R.-S., & Shiue, Y. R. (2008). An effective application of decision tree learning for online detection of mean shifts in multivariate control charts. Computers and Industrial Engineering, 55(2), 475–493.CrossRef
Zurück zum Zitat Guh, R.-S., & Tannock, J. D. T. (1999). A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing, 10(5), 449–462.CrossRef Guh, R.-S., & Tannock, J. D. T. (1999). A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing, 10(5), 449–462.CrossRef
Zurück zum Zitat Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef
Zurück zum Zitat He, S.-G., He, Z., & Wang, G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24(1), 25–34.CrossRef He, S.-G., He, Z., & Wang, G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24(1), 25–34.CrossRef
Zurück zum Zitat Ho, E. S., & Chang, S. I. (1999). An integrated neural network approach for simultaneous monitoring of process mean and variance shifts a comparative study. International Journal of Production Research, 37(8), 1881–1901.CrossRef Ho, E. S., & Chang, S. I. (1999). An integrated neural network approach for simultaneous monitoring of process mean and variance shifts a comparative study. International Journal of Production Research, 37(8), 1881–1901.CrossRef
Zurück zum Zitat Hwarng, H. B., & Hubele, N. F. (1993a). X-bar control chart pattern identification through efficient off-line neural network training. IIE Transactions, 25(3), 27–40.CrossRef Hwarng, H. B., & Hubele, N. F. (1993a). X-bar control chart pattern identification through efficient off-line neural network training. IIE Transactions, 25(3), 27–40.CrossRef
Zurück zum Zitat Hwarng, H. B., & Hubele, N. F. (1993b). Back-propagation pattern recognizers for X-bar control charts: methodology and performance. Computers and Industrial Engineering, 24(2), 219–235.CrossRef Hwarng, H. B., & Hubele, N. F. (1993b). Back-propagation pattern recognizers for X-bar control charts: methodology and performance. Computers and Industrial Engineering, 24(2), 219–235.CrossRef
Zurück zum Zitat Issam, B. K., & Mohamed, L. (2008). Support vector regression based residual MCUSUM control chart for autocorrelated process. Applied Mathematics and Computation, 201(1–2), 565–574.CrossRef Issam, B. K., & Mohamed, L. (2008). Support vector regression based residual MCUSUM control chart for autocorrelated process. Applied Mathematics and Computation, 201(1–2), 565–574.CrossRef
Zurück zum Zitat Jiang, P. Y., Liu, D. Y., & Zeng, Z. J. (2009). Recognizing control chart patterns with neural network and numerical fitting. Journal of Intelligent Manufacturing, 20(6), 625–635.CrossRef Jiang, P. Y., Liu, D. Y., & Zeng, Z. J. (2009). Recognizing control chart patterns with neural network and numerical fitting. Journal of Intelligent Manufacturing, 20(6), 625–635.CrossRef
Zurück zum Zitat Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimisation. Proceedings of the IEEE international conference on neural networks, 27 November-1 December, Perth, Australia, IV (pp. 1942–1948). Piscataway, NJ: IEEE Service Centre. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimisation. Proceedings of the IEEE international conference on neural networks, 27 November-1 December, Perth, Australia, IV (pp. 1942–1948). Piscataway, NJ: IEEE Service Centre.
Zurück zum Zitat Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm optimization. Proceedings of the IEEE international conference on computational cybernetics and simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press. Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm optimization. Proceedings of the IEEE international conference on computational cybernetics and simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press.
Zurück zum Zitat Khoo, M. B. C. (2005). A new bivariate control chart to monitor the multivariate process mean and variance simultaneously. Quality Engineering, 17(1), 109–118.CrossRef Khoo, M. B. C. (2005). A new bivariate control chart to monitor the multivariate process mean and variance simultaneously. Quality Engineering, 17(1), 109–118.CrossRef
Zurück zum Zitat Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. Advances in neural information processing systems 7 (pp. 231–238). Denver, CO, Cambridge MA: MIT Press. Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. Advances in neural information processing systems 7 (pp. 231–238). Denver, CO, Cambridge MA: MIT Press.
Zurück zum Zitat Lapedes, A., & Farber, R. (1987). How neural nets work. In: Neural information processing systems (pp. 442–456). New York: American Institute of Physics. Lapedes, A., & Farber, R. (1987). How neural nets work. In: Neural information processing systems (pp. 442–456). New York: American Institute of Physics.
Zurück zum Zitat Low, C., Hsu, C. M., & Yu, F. J. (2003). Analysis of variations in a multi-variate process using neural networks. International Journal of Advanced Manufacturing Technology, 22(11–12), 911–921. Low, C., Hsu, C. M., & Yu, F. J. (2003). Analysis of variations in a multi-variate process using neural networks. International Journal of Advanced Manufacturing Technology, 22(11–12), 911–921.
Zurück zum Zitat Machado, M. A. G., Costa, A. F. B., & Marins, F. A. S. (2009). Control charts for monitoring the mean vector and the covariance matrix of bivariate processes. International Journal of Advanced Manufacturing Technology, 45(7–8), 772–785.CrossRef Machado, M. A. G., Costa, A. F. B., & Marins, F. A. S. (2009). Control charts for monitoring the mean vector and the covariance matrix of bivariate processes. International Journal of Advanced Manufacturing Technology, 45(7–8), 772–785.CrossRef
Zurück zum Zitat Quang, A. T., Zhang, Q. L., & Li, X. (2002). Evolving support vector machine parameters. In: Proceedings of the first international conference on machine learning and cybernetics (pp. 548–551). Beijing, China: IEEE. Quang, A. T., Zhang, Q. L., & Li, X. (2002). Evolving support vector machine parameters. In: Proceedings of the first international conference on machine learning and cybernetics (pp. 548–551). Beijing, China: IEEE.
Zurück zum Zitat Ryan, T. P. (2011). Statistical methods for quality improvement (3rd ed.). New York: Wiley.CrossRef Ryan, T. P. (2011). Statistical methods for quality improvement (3rd ed.). New York: Wiley.CrossRef
Zurück zum Zitat Salehi, M., Bahreininejad, A., & Nakhai, I. (2012). On line detection of mean and variance shift using neural networks and support vector machine in multivariate processes. Applied Soft Computing, 12(9), 2973–2984.CrossRef Salehi, M., Bahreininejad, A., & Nakhai, I. (2012). On line detection of mean and variance shift using neural networks and support vector machine in multivariate processes. Applied Soft Computing, 12(9), 2973–2984.CrossRef
Zurück zum Zitat Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227. Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
Zurück zum Zitat Smits, G. F., & Jordaan, E. M. (2002). Improved SVM regression using mixtures of kernels. Proceedings of the 2002 international joint conference on neural networks (pp. 2785–2790). Honolulu: Institute of Electrical and Electronics Engineers Inc. Smits, G. F., & Jordaan, E. M. (2002). Improved SVM regression using mixtures of kernels. Proceedings of the 2002 international joint conference on neural networks (pp. 2785–2790). Honolulu: Institute of Electrical and Electronics Engineers Inc.
Zurück zum Zitat Takemoto, Y., & Arizono, I. (2005). A study of multivariate \((\overline{{X}}, S) \) control chart based on Kullback–Leibler information. International Journal of Advanced Manufacturing Technology, 25(11–12), 1205–1210.CrossRef Takemoto, Y., & Arizono, I. (2005). A study of multivariate \((\overline{{X}}, S) \) control chart based on Kullback–Leibler information. International Journal of Advanced Manufacturing Technology, 25(11–12), 1205–1210.CrossRef
Zurück zum Zitat Vapnik, V. N. (1999). The nature of statistical learning theory (2nd ed.). New York: Springer. Vapnik, V. N. (1999). The nature of statistical learning theory (2nd ed.). New York: Springer.
Zurück zum Zitat Wang, T. Y., & Chen, L. H. (2002). Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13(3), 211–221.CrossRef Wang, T. Y., & Chen, L. H. (2002). Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13(3), 211–221.CrossRef
Zurück zum Zitat Yang, W.-A. (2013). Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0833-z. Yang, W.-A. (2013). Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks. Journal of Intelligent Manufacturing. doi:10.​1007/​s10845-013-0833-z.
Zurück zum Zitat Yang, W.-A., & Zhou, W. (2013). Autoregressive coefficient-invariant control chart pattern recognition in autocorrelated manufacturing processes using neural network ensemble. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-013-0847-6. Yang, W.-A., & Zhou, W. (2013). Autoregressive coefficient-invariant control chart pattern recognition in autocorrelated manufacturing processes using neural network ensemble. Journal of Intelligent Manufacturing,. doi:10.​1007/​s10845-013-0847-6.
Zurück zum Zitat Zhang, G. X., & Chang, S. I. (2008). Multivariate EWMA control charts using individual observations for process mean and variance monitoring and diagnosis. International Journal of Production Research, 46(24), 6855–6881.CrossRef Zhang, G. X., & Chang, S. I. (2008). Multivariate EWMA control charts using individual observations for process mean and variance monitoring and diagnosis. International Journal of Production Research, 46(24), 6855–6881.CrossRef
Zurück zum Zitat Zhou, Z. H., Wu, J. X., & Tang, W. (2002). Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1–2), 239–263.CrossRef Zhou, Z. H., Wu, J. X., & Tang, W. (2002). Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1–2), 239–263.CrossRef
Metadaten
Titel
Simultaneous monitoring of mean vector and covariance matrix shifts in bivariate manufacturing processes using hybrid ensemble learning-based model
verfasst von
Wen-An Yang
Publikationsdatum
21.05.2014
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 4/2016
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-014-0920-9

Weitere Artikel der Ausgabe 4/2016

Journal of Intelligent Manufacturing 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.