Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.01.2017 | New Trends in data pre-processing methods for signal and image classification | Ausgabe 10/2017

Neural Computing and Applications 10/2017

Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism

Zeitschrift:
Neural Computing and Applications > Ausgabe 10/2017
Autoren:
R. Sindhu, Ruzelita Ngadiran, Yasmin Mohd Yacob, Nik Adilah Hanin Zahri, M. Hariharan

Abstract

Pattern recognition is the task of choosing the pertinent and descriptive features that best describes the target concept during feature selection (FS). Choosing such descriptive features becomes a daunting task in large-volume datasets which have high dimensionality. In such cases, selecting the discriminative features with better classification accuracy is tedious. To overcome this issue, in recent times, many search heuristics have been used to select the best features from these large-volume datasets. In this work, a sine–cosine algorithm (SCA) with Elitism strategy and new best solution update mechanism is proposed to select best features/attributes to improve the classification accuracy. Improved version of SCA is named as improved sine–cosine algorithm (ISCA). Wrapper-based FS approach is used. ELM with radial basis function kernel is used as the learning algorithm. For experimentation, ISCA is tested with ten benchmark datasets. Experimental results have proved the efficiency of ISCA in achieving better classification performance along with less number of features. Both computational and time complexity has been handled by this algorithm in an expedite manner. The potency of this algorithm is proved by comparing its results with three well-known meta-heuristics such as GA, PSO and basic SCA. Finally, it can be seen that pattern classification using ISCA has been commendable in achieving better classification performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2017

Neural Computing and Applications 10/2017 Zur Ausgabe

New Trends in data pre-processing methods for signal and image classification

An improved FCM algorithm with adaptive weights based on SA-PSO

New Trends in data pre-processing methods for signal and image classification

Leakage detection and localization on water transportation pipelines: a multi-label classification approach

New Trends in data pre-processing methods for signal and image classification

Automatic detection of respiratory arrests in OSA patients using PPG and machine learning techniques

New Trends in data pre-processing methods for signal and image classification

Automatic sleep stages classification based on iterative filtering of electroencephalogram signals

Premium Partner

    Bildnachweise