Skip to main content

2019 | OriginalPaper | Buchkapitel

Sine-Cosine Algorithm for OPF Analysis in Distribution Systems to Size Distributed Generators

verfasst von : María Lourdes Manrique, Oscar Danilo Montoya, Víctor Manuel Garrido, Luis Fernando Grisales-Noreña, Walter Gil-González

Erschienen in: Applied Computer Sciences in Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper addresses the analysis the optimal power flow (OPF) problem in alternating current (AC) radial distribution networks by using a new metaheuristic optimization technique known as a sine-cosine algorithm (SCA). This combinatorial optimization approach allows for solving the nonlinear non-convex optimization OPF problem by using a master-slave strategy. In the master stage, the soft computing SCA is used to define the power dispatch at each distributed generator (dimensioning problem). In the slave stage, it is used a conventional radial power flow formulated by incidence matrices is used for evaluating the total power losses (objective function evaluation). Two conventional highly used distribution feeders with 33 and 69 nodes are employed for validating the proposed master-slave approach. Simulation results are compared with different literature methods such as genetic algorithm, particle swarm optimization, and krill herd algorithm. All the simulations are performed in MATLAB programming environment, and their results show the effectiveness of the proposed approach in contrast to previously reported methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
\(^{\star }\) represent the conjugate operator in complex numbers.
 
Literatur
1.
Zurück zum Zitat Keane, A., et al.: State-of-the-art techniques and challenges ahead for distributed generation planning and optimization. IEEE Trans. Power Syst. 28(2), 1493–1502 (2013)CrossRef Keane, A., et al.: State-of-the-art techniques and challenges ahead for distributed generation planning and optimization. IEEE Trans. Power Syst. 28(2), 1493–1502 (2013)CrossRef
2.
Zurück zum Zitat Montoya, O.D., Garces, A., Castro, C.A.: Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation. IEEE Lat. Am. Trans. 16(8), 2213–2220 (2018)CrossRef Montoya, O.D., Garces, A., Castro, C.A.: Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation. IEEE Lat. Am. Trans. 16(8), 2213–2220 (2018)CrossRef
3.
Zurück zum Zitat Zeng, B., Zhang, J., Yang, X., Wang, J., Dong, J., Zhang, Y.: Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response. IEEE Trans. Power Syst. 29(3), 1153–1165 (2014)CrossRef Zeng, B., Zhang, J., Yang, X., Wang, J., Dong, J., Zhang, Y.: Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response. IEEE Trans. Power Syst. 29(3), 1153–1165 (2014)CrossRef
4.
Zurück zum Zitat Li, R., Wang, W., Xia, M.: Cooperative planning of active distribution system with renewable energy sources and energy storage systems. IEEE Access 6, 5916–5926 (2018)CrossRef Li, R., Wang, W., Xia, M.: Cooperative planning of active distribution system with renewable energy sources and energy storage systems. IEEE Access 6, 5916–5926 (2018)CrossRef
5.
Zurück zum Zitat Montoya, O.D., Grajales, A., Garces, A., Castro, C.A.: Distribution systems operation considering energy storage devices and distributed generation. IEEE Lat. Am. Trans. 15(5), 890–900 (2017)CrossRef Montoya, O.D., Grajales, A., Garces, A., Castro, C.A.: Distribution systems operation considering energy storage devices and distributed generation. IEEE Lat. Am. Trans. 15(5), 890–900 (2017)CrossRef
6.
Zurück zum Zitat Bai, X., Qu, L., Qiao, W.: Robust AC optimal power flow for power networks with wind power generation. IEEE Trans. Power Syst. 31(5), 4163–4164 (2016)CrossRef Bai, X., Qu, L., Qiao, W.: Robust AC optimal power flow for power networks with wind power generation. IEEE Trans. Power Syst. 31(5), 4163–4164 (2016)CrossRef
7.
Zurück zum Zitat Gabash, A., Li, P.: Active-reactive optimal power flow in distribution networks with embedded generation and battery storage. IEEE Trans. Power Syst. 27(4), 2026–2035 (2012)CrossRef Gabash, A., Li, P.: Active-reactive optimal power flow in distribution networks with embedded generation and battery storage. IEEE Trans. Power Syst. 27(4), 2026–2035 (2012)CrossRef
8.
Zurück zum Zitat Wang, Y., Zhang, N., Li, H., Yang, J., Kang, C.: Linear three-phase power flow for unbalanced active distribution networks with PV nodes. CSEE J. Power Energy Syst. 3(3), 321–324 (2017)CrossRef Wang, Y., Zhang, N., Li, H., Yang, J., Kang, C.: Linear three-phase power flow for unbalanced active distribution networks with PV nodes. CSEE J. Power Energy Syst. 3(3), 321–324 (2017)CrossRef
9.
Zurück zum Zitat Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A.: Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 11(1018), 1–27 (2018) Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A.: Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 11(1018), 1–27 (2018)
10.
Zurück zum Zitat Teng, J.-H.: A modified gauss–seidel algorithm of three-phase power flow analysis in distribution networks. Int. J. Electr. Power Energy Syst. 24(2), 97–102 (2002)CrossRef Teng, J.-H.: A modified gauss–seidel algorithm of three-phase power flow analysis in distribution networks. Int. J. Electr. Power Energy Syst. 24(2), 97–102 (2002)CrossRef
11.
Zurück zum Zitat Zamzam, A.S., Sidiropoulos, N.D., Dall’Anese, E.: Beyond relaxation and Newton–Raphson: solving AC OPF for multi-phase systems with renewables. IEEE Trans. Smart Grid 9(5), 3966–3975 (2018)CrossRef Zamzam, A.S., Sidiropoulos, N.D., Dall’Anese, E.: Beyond relaxation and Newton–Raphson: solving AC OPF for multi-phase systems with renewables. IEEE Trans. Smart Grid 9(5), 3966–3975 (2018)CrossRef
12.
Zurück zum Zitat Garces, A.: A linear three-phase load flow for power distribution systems. IEEE Trans. Power Syst. 31(1), 827–828 (2016)MathSciNetCrossRef Garces, A.: A linear three-phase load flow for power distribution systems. IEEE Trans. Power Syst. 31(1), 827–828 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Lisboa, A., Guedes, L., Vieira, D., Saldanha, R.: A fast power flow method for radial networks with linear storage and no matrix inversions. Int. J. Electr. Power Energy Syst. 63, 901–907 (2014)CrossRef Lisboa, A., Guedes, L., Vieira, D., Saldanha, R.: A fast power flow method for radial networks with linear storage and no matrix inversions. Int. J. Electr. Power Energy Syst. 63, 901–907 (2014)CrossRef
14.
Zurück zum Zitat Sultana, S., Roy, P.K.: Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 40, 391–404 (2016)CrossRef Sultana, S., Roy, P.K.: Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 40, 391–404 (2016)CrossRef
15.
Zurück zum Zitat Attia, A.-F., Sehiemy, R.A.E., Hasanien, H.M.: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int. J. Electr. Power Energy Syst. 99, 331–343 (2018)CrossRef Attia, A.-F., Sehiemy, R.A.E., Hasanien, H.M.: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int. J. Electr. Power Energy Syst. 99, 331–343 (2018)CrossRef
16.
Zurück zum Zitat Moradi, M., Abedini, M.: A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 34(1), 66–74 (2012)CrossRef Moradi, M., Abedini, M.: A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 34(1), 66–74 (2012)CrossRef
17.
Zurück zum Zitat Huang, S., Wu, Q., Wang, J., Zhao, H.: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks. IEEE Trans. Power Syst. 32(2), 1359–1368 (2017) Huang, S., Wu, Q., Wang, J., Zhao, H.: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks. IEEE Trans. Power Syst. 32(2), 1359–1368 (2017)
18.
Zurück zum Zitat Venzke, A., Halilbasic, L., Markovic, U., Hug, G., Chatzivasileiadis, S.: Convex relaxations of chance constrained AC optimal power flow. IEEE Trans. Power Syst. 33(3), 2829–2841 (2018)CrossRef Venzke, A., Halilbasic, L., Markovic, U., Hug, G., Chatzivasileiadis, S.: Convex relaxations of chance constrained AC optimal power flow. IEEE Trans. Power Syst. 33(3), 2829–2841 (2018)CrossRef
19.
Zurück zum Zitat Miao, Z., Fan, L., Aghamolki, H.G., Zeng, B.: Least squares estimation based SDP cuts for SOCP relaxation of AC OPF. IEEE Trans. Autom. Control 63(1), 241–248 (2018)MathSciNetMATHCrossRef Miao, Z., Fan, L., Aghamolki, H.G., Zeng, B.: Least squares estimation based SDP cuts for SOCP relaxation of AC OPF. IEEE Trans. Autom. Control 63(1), 241–248 (2018)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Oliveira, E.J., Oliveira, L.W., Pereira, J., Honório, L.M., Silva, I.C., Marcato, A.: An optimal power flow based on safety barrier interior point method. Int. J. Electr. Power Energy Syst. 64, 977–985 (2015)CrossRef Oliveira, E.J., Oliveira, L.W., Pereira, J., Honório, L.M., Silva, I.C., Marcato, A.: An optimal power flow based on safety barrier interior point method. Int. J. Electr. Power Energy Syst. 64, 977–985 (2015)CrossRef
21.
Zurück zum Zitat Yang, J., He, L., Fu, S.: An improved PSO-based charging strategy of electric vehicles in electrical distribution grid. Appl. Energy 128, 82–92 (2014)CrossRef Yang, J., He, L., Fu, S.: An improved PSO-based charging strategy of electric vehicles in electrical distribution grid. Appl. Energy 128, 82–92 (2014)CrossRef
22.
Zurück zum Zitat Todorovski, M., Rajicic, D.: An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Trans. Power Syst. 21(2), 480–487 (2006)CrossRef Todorovski, M., Rajicic, D.: An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Trans. Power Syst. 21(2), 480–487 (2006)CrossRef
23.
Zurück zum Zitat Abido, M.A.: Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. 30(5), 469–483 (2002)CrossRef Abido, M.A.: Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. 30(5), 469–483 (2002)CrossRef
24.
Zurück zum Zitat Kılıc, U., Ayan, K.: Optimizing power flow of AC–DC power systems using artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 53, 592–602 (2013)CrossRef Kılıc, U., Ayan, K.: Optimizing power flow of AC–DC power systems using artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 53, 592–602 (2013)CrossRef
25.
Zurück zum Zitat Balachennaiah, P., Suryakalavathi, M., Nagendra, P.: Firefly algorithm based solution to minimize the real power loss in a power system. Ain Shams Eng. J. 9(1), 89–100 (2018)CrossRef Balachennaiah, P., Suryakalavathi, M., Nagendra, P.: Firefly algorithm based solution to minimize the real power loss in a power system. Ain Shams Eng. J. 9(1), 89–100 (2018)CrossRef
26.
Zurück zum Zitat Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L.F.: Power flow analysis in DC grids: two alternative numerical methods. IEEE Trans. Circuits Syst. II, 1 (2019) Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L.F.: Power flow analysis in DC grids: two alternative numerical methods. IEEE Trans. Circuits Syst. II, 1 (2019)
27.
Zurück zum Zitat Garces, A.: Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 151, 149–153 (2017)CrossRef Garces, A.: Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 151, 149–153 (2017)CrossRef
28.
Zurück zum Zitat Injeti, S.K., Kumar, N.P.: A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. Int. J. Electr. Power Energy Syst. 45(1), 142–151 (2013)CrossRef Injeti, S.K., Kumar, N.P.: A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. Int. J. Electr. Power Energy Syst. 45(1), 142–151 (2013)CrossRef
Metadaten
Titel
Sine-Cosine Algorithm for OPF Analysis in Distribution Systems to Size Distributed Generators
verfasst von
María Lourdes Manrique
Oscar Danilo Montoya
Víctor Manuel Garrido
Luis Fernando Grisales-Noreña
Walter Gil-González
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-31019-6_3