Skip to main content

2020 | OriginalPaper | Buchkapitel

Single-Atom Electrocatalysts for Water Splitting

verfasst von : Robson R. Guimaraes, Josue M. Gonçalves, Olle Björneholm, C. Moyses Araujo, Arnaldo Naves de Brito, Koiti Araki

Erschienen in: Methods for Electrocatalysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The amount of energy that has being required to keep the well-being of our society is increasing continuously imposing an urgent need for renewable and less pollutant alternative energy sources to fossil fuels, whose consumption in internal combustion engines and electric power plants are responsible for unprecedented atmospheric pollution, particularly concentrated in large cities. Another consequence seems to be the general increase of temperature of the planet leading to climate changes and catastrophic extreme events. Thus, the possibility of reserves depletion and global environmental issues associated with its use are prompting the search for clean renewable energy sources, as well as the development of efficient and more robust energy storage systems. The most promising one for such a purpose is based on the splitting of water in a photosynthetic system to store the energy of Sun as hydrogen and oxygen. In order to realize such a technology, new more efficient electrocatalysts for oxygen and hydrogen evolution reaction based on single-atom catalysts, especially designed to exploit the maximum potentiality of the elements, are being developed, fueled by increasingly powerful theoretical modelling and characterization tools, thus paving broad roads towards a bright and sustainable society. The main advancements for preparation and characterization of such novel strategic materials are considered in this account. Furthermore, atomic scale modelling based on density functional theory is also discussed in the context of the unique electronic structure that leads to superior catalytic activity, highlighting its potential to advance this important scientific field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat You B, Sun YJ (2018) Innovative strategies for electrocatalytic water splitting. Acc Chem Res 51(7):1571–1580 You B, Sun YJ (2018) Innovative strategies for electrocatalytic water splitting. Acc Chem Res 51(7):1571–1580
2.
Zurück zum Zitat Zhu YP, Guo CX, Zheng Y, Qiao SZ (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50(4):915–923CrossRef Zhu YP, Guo CX, Zheng Y, Qiao SZ (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50(4):915–923CrossRef
3.
Zurück zum Zitat Miles MH, Thomason MA (1976) Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J Electrochem Soc 123(10):1459–1461CrossRef Miles MH, Thomason MA (1976) Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J Electrochem Soc 123(10):1459–1461CrossRef
4.
Zurück zum Zitat Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086CrossRef Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086CrossRef
5.
Zurück zum Zitat Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRef Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRef
6.
Zurück zum Zitat Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1(12):2075–2081CrossRef Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1(12):2075–2081CrossRef
7.
Zurück zum Zitat Galizzioli D, Tantardini F, Trasatti S (1974) Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes. J Appl Electrochem 4(1):57–67 Galizzioli D, Tantardini F, Trasatti S (1974) Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes. J Appl Electrochem 4(1):57–67
8.
Zurück zum Zitat Kötz R, Stucki S, Scherson D, Kolb DM (1984) In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J Electroanal Chem Interfacial Electrochem 172(1):211–219CrossRef Kötz R, Stucki S, Scherson D, Kolb DM (1984) In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J Electroanal Chem Interfacial Electrochem 172(1):211–219CrossRef
9.
Zurück zum Zitat Mamaca N, Mayousse E, Arrii-Clacens S, Napporn TW, Servat K, Guillet N, Kokoh KB (2012) Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl Catal B 111–112:376–380CrossRef Mamaca N, Mayousse E, Arrii-Clacens S, Napporn TW, Servat K, Guillet N, Kokoh KB (2012) Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl Catal B 111–112:376–380CrossRef
10.
Zurück zum Zitat Li G, Li S, Ge J, Liu C, Xing W (2017) Discontinuously covered IrO2–RuO2@Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure. J Mater Chem A 5(33):17221–17229CrossRef Li G, Li S, Ge J, Liu C, Xing W (2017) Discontinuously covered IrO2–RuO2@Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure. J Mater Chem A 5(33):17221–17229CrossRef
11.
Zurück zum Zitat Kötz R, Stucki S (1986) Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media. Electrochim Acta 31(10):1311–1316CrossRef Kötz R, Stucki S (1986) Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media. Electrochim Acta 31(10):1311–1316CrossRef
12.
Zurück zum Zitat Audichon T, Mayousse E, Morisset S, Morais C, Comminges C, Napporn TW, Kokoh KB (2014) Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Int J Hydrogen Energy 39(30):16785–16796CrossRef Audichon T, Mayousse E, Morisset S, Morais C, Comminges C, Napporn TW, Kokoh KB (2014) Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Int J Hydrogen Energy 39(30):16785–16796CrossRef
13.
Zurück zum Zitat Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180CrossRef Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180CrossRef
14.
Zurück zum Zitat Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6(12):8069–8097CrossRef Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6(12):8069–8097CrossRef
15.
Zurück zum Zitat McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987CrossRef McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987CrossRef
16.
Zurück zum Zitat Merrill MD, Dougherty RC (2008) Metal oxide catalysts for the evolution of O2 from H2O. J Phys Chem C 112(10):3655–3666CrossRef Merrill MD, Dougherty RC (2008) Metal oxide catalysts for the evolution of O2 from H2O. J Phys Chem C 112(10):3655–3666CrossRef
17.
Zurück zum Zitat Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132(39):13612–13614CrossRef Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132(39):13612–13614CrossRef
18.
Zurück zum Zitat Chen S, Duan J, Jaroniec M, Qiao S-Z (2014) Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv Mater 26(18):2925–2930CrossRef Chen S, Duan J, Jaroniec M, Qiao S-Z (2014) Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv Mater 26(18):2925–2930CrossRef
19.
Zurück zum Zitat Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296CrossRef Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296CrossRef
20.
Zurück zum Zitat Cui W, Liu Q, Cheng N, Asiri AM, Sun X (2014) Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chem Commun 50(66):9340–9342CrossRef Cui W, Liu Q, Cheng N, Asiri AM, Sun X (2014) Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chem Commun 50(66):9340–9342CrossRef
21.
Zurück zum Zitat Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 4:2390CrossRef Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 4:2390CrossRef
22.
Zurück zum Zitat Zhuo JQ, Wang TY, Zhang G, Liu L, Gan LB, Li MX (2013) Salts of C-60(OH)(8) electrodeposited onto a glassy carbon electrode: surprising catalytic performance in the hydrogen evolution reaction. Angew Chem-Int Ed 52(41):10867–10870CrossRef Zhuo JQ, Wang TY, Zhang G, Liu L, Gan LB, Li MX (2013) Salts of C-60(OH)(8) electrodeposited onto a glassy carbon electrode: surprising catalytic performance in the hydrogen evolution reaction. Angew Chem-Int Ed 52(41):10867–10870CrossRef
23.
Zurück zum Zitat Tian GL, Zhao MQ, Yu DS, Kong XY, Huang JQ, Zhang Q, Wei F (2014) Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10(11):2251–2259 Tian GL, Zhao MQ, Yu DS, Kong XY, Huang JQ, Zhang Q, Wei F (2014) Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10(11):2251–2259
24.
Zurück zum Zitat Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938CrossRef Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938CrossRef
25.
Zurück zum Zitat Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634CrossRef Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634CrossRef
26.
Zurück zum Zitat Guimaraes RR, Parussulo ALA, Toma HE, Araki K (2013) New tunable ruthenium complex dyes for TiO2 solar cells. Inorg Chim Acta 404:23–28CrossRef Guimaraes RR, Parussulo ALA, Toma HE, Araki K (2013) New tunable ruthenium complex dyes for TiO2 solar cells. Inorg Chim Acta 404:23–28CrossRef
27.
Zurück zum Zitat Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740–1748CrossRef Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740–1748CrossRef
28.
Zurück zum Zitat Ebadi M, Marchiori C, Mindemark J, Brandell D, Araujo CM (2019) Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations. J Mater Chem A 7(14):8394–8404CrossRef Ebadi M, Marchiori C, Mindemark J, Brandell D, Araujo CM (2019) Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations. J Mater Chem A 7(14):8394–8404CrossRef
29.
Zurück zum Zitat Damas G, Marchiori CFN, Araujo CM (2018) On the design of donor acceptor conjugated polymers for photocatalytic hydrogen evolution reaction: first-principles theory-based assessment. J Phys Chem C 122(47):26876–26888CrossRef Damas G, Marchiori CFN, Araujo CM (2018) On the design of donor acceptor conjugated polymers for photocatalytic hydrogen evolution reaction: first-principles theory-based assessment. J Phys Chem C 122(47):26876–26888CrossRef
30.
Zurück zum Zitat Ertem MZ, Konezny SJ, Araujo CM, Batista VS (2013) Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J Phys Chem Lett 4(5):745–748CrossRef Ertem MZ, Konezny SJ, Araujo CM, Batista VS (2013) Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J Phys Chem Lett 4(5):745–748CrossRef
31.
Zurück zum Zitat Ebadi M, Nasser A, Carboni M, Younesi R, Marchiori CFN, Brandell D, Araujo CM (2019) Insights into the Li-metal/organic carbonate interfacial chemistry by combined first-principles theory and X-ray photoelectron spectroscopy. J Phys Chem C 123(1):347–355CrossRef Ebadi M, Nasser A, Carboni M, Younesi R, Marchiori CFN, Brandell D, Araujo CM (2019) Insights into the Li-metal/organic carbonate interfacial chemistry by combined first-principles theory and X-ray photoelectron spectroscopy. J Phys Chem C 123(1):347–355CrossRef
32.
Zurück zum Zitat Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37CrossRef Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37CrossRef
33.
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3B):B864 Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3B):B864
34.
Zurück zum Zitat Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133CrossRef
35.
Zurück zum Zitat Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100CrossRef Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100CrossRef
36.
Zurück zum Zitat Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45(23):13244–13249CrossRef Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45(23):13244–13249CrossRef
37.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
38.
Zurück zum Zitat Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14) Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14)
39.
Zurück zum Zitat Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
40.
Zurück zum Zitat Kresse G, Hafner J (1993) Abinitio molecular-dynamics for liquid-metals. Phys Rev B 47(1):558–561CrossRef Kresse G, Hafner J (1993) Abinitio molecular-dynamics for liquid-metals. Phys Rev B 47(1):558–561CrossRef
41.
Zurück zum Zitat Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRef Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRef
42.
Zurück zum Zitat Cottenier S (2004) Density functional theory and the family of (L)APW-method a step-by-step introduction. Belgium Cottenier S (2004) Density functional theory and the family of (L)APW-method a step-by-step introduction. Belgium
43.
Zurück zum Zitat Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press
44.
Zurück zum Zitat Patel AM, Ringe S, Siahrostami S, Bajdich M, Norskov JK, Kulkarni AR (2018) Theoretical approaches to describing the oxygen reduction reaction activity of single-atom catalysts. J Phys Chem C 122(51):29307–29318CrossRef Patel AM, Ringe S, Siahrostami S, Bajdich M, Norskov JK, Kulkarni AR (2018) Theoretical approaches to describing the oxygen reduction reaction activity of single-atom catalysts. J Phys Chem C 122(51):29307–29318CrossRef
45.
Zurück zum Zitat George SM (2010) Atomic layer deposition: an overview. Chem Rev 110(1):111–131CrossRef George SM (2010) Atomic layer deposition: an overview. Chem Rev 110(1):111–131CrossRef
46.
Zurück zum Zitat Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham T-K, Liu L-M et al (2016) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7:13638CrossRef Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham T-K, Liu L-M et al (2016) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7:13638CrossRef
47.
Zurück zum Zitat Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis MN et al (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3:1775CrossRef Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis MN et al (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3:1775CrossRef
48.
Zurück zum Zitat Stambula S, Gauquelin N, Bugnet M, Gorantla S, Turner S, Sun S, Liu J, Zhang G, Sun X, Botton GA (2014) Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J Phys Chem C 118(8):3890–3900CrossRef Stambula S, Gauquelin N, Bugnet M, Gorantla S, Turner S, Sun S, Liu J, Zhang G, Sun X, Botton GA (2014) Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J Phys Chem C 118(8):3890–3900CrossRef
49.
Zurück zum Zitat Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8(5):1594–1601CrossRef Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8(5):1594–1601CrossRef
50.
Zurück zum Zitat Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen EI, Kallio T, Laasonen K (2017) Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal 7(5):3121–3130CrossRef Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen EI, Kallio T, Laasonen K (2017) Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal 7(5):3121–3130CrossRef
51.
Zurück zum Zitat Li J-C, Wei Z, Liu D, Du D, Lin Y, Shao M (2019) Dispersive single-atom metals anchored on functionalized nanocarbons for electrochemical reactions. Top Curr Chem 377(1):4CrossRef Li J-C, Wei Z, Liu D, Du D, Lin Y, Shao M (2019) Dispersive single-atom metals anchored on functionalized nanocarbons for electrochemical reactions. Top Curr Chem 377(1):4CrossRef
52.
Zurück zum Zitat Chen W, Pei J, He C-T, Wan J, Ren H, Zhu Y, Wang Y, Dong J, Tian S, Cheong W-C et al (2017) Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed 56(50):16086–16090CrossRef Chen W, Pei J, He C-T, Wan J, Ren H, Zhu Y, Wang Y, Dong J, Tian S, Cheong W-C et al (2017) Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed 56(50):16086–16090CrossRef
53.
Zurück zum Zitat Martensson N, Eriksson M (2018) The saga of MAX IV, the first multi-bend achromat synchrotron light source. Nucl Instrum Methods Phys Res, Sect A 907:97–104CrossRef Martensson N, Eriksson M (2018) The saga of MAX IV, the first multi-bend achromat synchrotron light source. Nucl Instrum Methods Phys Res, Sect A 907:97–104CrossRef
54.
Zurück zum Zitat Bogan MJ, Benner WH, Boutet S, Rohner U, Frank M, Barty A, Seibert MM, Maia F, Marchesini S, Bajt S et al (2008) Single particle X-ray diffractive imaging. Nano Lett 8(1):310–316CrossRef Bogan MJ, Benner WH, Boutet S, Rohner U, Frank M, Barty A, Seibert MM, Maia F, Marchesini S, Bajt S et al (2008) Single particle X-ray diffractive imaging. Nano Lett 8(1):310–316CrossRef
55.
Zurück zum Zitat Hufner S (2003) Photoelectron spectroscopy—principles and applications. Springer, TokyoCrossRef Hufner S (2003) Photoelectron spectroscopy—principles and applications. Springer, TokyoCrossRef
56.
Zurück zum Zitat Masuda T (2018) Various spectroelectrochemical cells for in situ observation of electrochemical processes at solid–liquid interfaces. Top Catal 61(20):2103–2113CrossRef Masuda T (2018) Various spectroelectrochemical cells for in situ observation of electrochemical processes at solid–liquid interfaces. Top Catal 61(20):2103–2113CrossRef
57.
Zurück zum Zitat Salmeron M (2018) From surfaces to interfaces: ambient pressure XPS and beyond. Top Catal 61(20):2044–2051CrossRef Salmeron M (2018) From surfaces to interfaces: ambient pressure XPS and beyond. Top Catal 61(20):2044–2051CrossRef
58.
Zurück zum Zitat Kolmakov A, Gregoratti L, Kiskinova M, Günther S (2016) Recent approaches for bridging the pressure gap in photoelectron microspectroscopy. Top Catal 59(5):448–468CrossRef Kolmakov A, Gregoratti L, Kiskinova M, Günther S (2016) Recent approaches for bridging the pressure gap in photoelectron microspectroscopy. Top Catal 59(5):448–468CrossRef
59.
Zurück zum Zitat Starr DE, Liu Z, Havecker M, Knop-Gericke A, Bluhm H (2013) Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42(13):5833–5857CrossRef Starr DE, Liu Z, Havecker M, Knop-Gericke A, Bluhm H (2013) Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42(13):5833–5857CrossRef
60.
Zurück zum Zitat Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Shao-Horn Y (2015) Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem Res 48(11):2976–2983CrossRef Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Shao-Horn Y (2015) Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem Res 48(11):2976–2983CrossRef
61.
Zurück zum Zitat Axnanda S, Crumlin EJ, Mao BH, Rani S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P et al (2015) Using “tender” X-ray ambient pressure X-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci Rep 5 Axnanda S, Crumlin EJ, Mao BH, Rani S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P et al (2015) Using “tender” X-ray ambient pressure X-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci Rep 5
62.
Zurück zum Zitat Faubel M, Steiner B, Toennies JP (1997) Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J Chem Phys 106(22):9013–9031CrossRef Faubel M, Steiner B, Toennies JP (1997) Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J Chem Phys 106(22):9013–9031CrossRef
63.
Zurück zum Zitat Winter B, Weber R, Widdra W, Dittmar M, Faubel M, Hertel IV (2004) Full valence band photoemission from liquid water using EUV synchrotron radiation. J Phys Chem A 108(14):2625–2632CrossRef Winter B, Weber R, Widdra W, Dittmar M, Faubel M, Hertel IV (2004) Full valence band photoemission from liquid water using EUV synchrotron radiation. J Phys Chem A 108(14):2625–2632CrossRef
64.
Zurück zum Zitat Winter B, Faubel M (2006) Photoemission from liquid aqueous solutions. Chem Rev 106(4):1176–1211CrossRef Winter B, Faubel M (2006) Photoemission from liquid aqueous solutions. Chem Rev 106(4):1176–1211CrossRef
65.
Zurück zum Zitat Jungwirth P, Winter B (2008) Ions at aqueous interfaces: from water surface to hydrated proteins. Annu Rev Phys Chem 59(1):343–366CrossRef Jungwirth P, Winter B (2008) Ions at aqueous interfaces: from water surface to hydrated proteins. Annu Rev Phys Chem 59(1):343–366CrossRef
66.
Zurück zum Zitat Ottosson N, Wernersson E, Söderström J, Pokapanich W, Kaufmann S, Svensson S, Persson I, Öhrwall G, Björneholm O (2011) The protonation state of small carboxylic acids at the water surface from photoelectron spectroscopy. Phys Chem Chem Phys 13(26):12261–12267CrossRef Ottosson N, Wernersson E, Söderström J, Pokapanich W, Kaufmann S, Svensson S, Persson I, Öhrwall G, Björneholm O (2011) The protonation state of small carboxylic acids at the water surface from photoelectron spectroscopy. Phys Chem Chem Phys 13(26):12261–12267CrossRef
67.
Zurück zum Zitat Ottosson N, Børve KJ, Spångberg D, Bergersen H, Sæthre LJ, Faubel M, Pokapanich W, Öhrwall G, Björneholm O, Winter B (2011) On the origins of core–electron chemical shifts of small biomolecules in aqueous solution: insights from photoemission and ab initio calculations of glycineaq. J Am Chem Soc 133(9):3120–3130CrossRef Ottosson N, Børve KJ, Spångberg D, Bergersen H, Sæthre LJ, Faubel M, Pokapanich W, Öhrwall G, Björneholm O, Winter B (2011) On the origins of core–electron chemical shifts of small biomolecules in aqueous solution: insights from photoemission and ab initio calculations of glycineaq. J Am Chem Soc 133(9):3120–3130CrossRef
68.
Zurück zum Zitat Ottosson N, Ohrwall G, Bjorneholm O (2012) Ultrafast charge delocalization dynamics in aqueous electrolytes: new insights from Auger electron spectroscopy. Chem Phys Lett 543:1–11CrossRef Ottosson N, Ohrwall G, Bjorneholm O (2012) Ultrafast charge delocalization dynamics in aqueous electrolytes: new insights from Auger electron spectroscopy. Chem Phys Lett 543:1–11CrossRef
69.
Zurück zum Zitat Artiglia L, Edebeli J, Orlando F, Chen S, Lee M-T, Corral Arroyo P, Gilgen A, Bartels-Rausch T, Kleibert A, Vazdar M et al (2017) A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nat Commun 8(1):700CrossRef Artiglia L, Edebeli J, Orlando F, Chen S, Lee M-T, Corral Arroyo P, Gilgen A, Bartels-Rausch T, Kleibert A, Vazdar M et al (2017) A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nat Commun 8(1):700CrossRef
70.
Zurück zum Zitat Ekholm V, Caleman C, Bjärnhall Prytz N, Walz M-M, Werner J, Öhrwall G, Rubensson J-E, Björneholm O (2018) Strong enrichment of atmospherically relevant organic ions at the aqueous interface: the role of ion pairing and cooperative effects. Phys Chem Chem Phys 20(42):27185–27191CrossRef Ekholm V, Caleman C, Bjärnhall Prytz N, Walz M-M, Werner J, Öhrwall G, Rubensson J-E, Björneholm O (2018) Strong enrichment of atmospherically relevant organic ions at the aqueous interface: the role of ion pairing and cooperative effects. Phys Chem Chem Phys 20(42):27185–27191CrossRef
71.
Zurück zum Zitat Xiong W, Hickstein DD, Schnitzenbaumer KJ, Ellis JL, Palm BB, Keister KE, Ding C, Miaja-Avila L, Dukovic G, Jimenez JL et al (2013) Photoelectron spectroscopy of CdSe nanocrystals in the gas phase: a direct measure of the evanescent electron wave function of quantum dots. Nano Lett 13(6):2924–2930CrossRef Xiong W, Hickstein DD, Schnitzenbaumer KJ, Ellis JL, Palm BB, Keister KE, Ding C, Miaja-Avila L, Dukovic G, Jimenez JL et al (2013) Photoelectron spectroscopy of CdSe nanocrystals in the gas phase: a direct measure of the evanescent electron wave function of quantum dots. Nano Lett 13(6):2924–2930CrossRef
72.
Zurück zum Zitat Milosavljevic AR, Bozanic DK, Sadhu S, Vukmirovic N, Dojcilovic R, Sapkota P, Huang WX, Bozek J, Nicolas C, Nahon L et al (2018) Electronic properties of free-standing surfactant-capped lead halide perovskite nanocrystals isolated in Vacuo. J Phys Chem Lett 9(13):3604 Milosavljevic AR, Bozanic DK, Sadhu S, Vukmirovic N, Dojcilovic R, Sapkota P, Huang WX, Bozek J, Nicolas C, Nahon L et al (2018) Electronic properties of free-standing surfactant-capped lead halide perovskite nanocrystals isolated in Vacuo. J Phys Chem Lett 9(13):3604
73.
Zurück zum Zitat Bak S-M, Shadike Z, Lin R, Yu X, Yang X-Q (2018) In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater 10(7):563–580CrossRef Bak S-M, Shadike Z, Lin R, Yu X, Yang X-Q (2018) In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater 10(7):563–580CrossRef
74.
Zurück zum Zitat Liu X, Yang W, Liu Z (2014) Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials. Adv Mater 26(46):7710–7729CrossRef Liu X, Yang W, Liu Z (2014) Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials. Adv Mater 26(46):7710–7729CrossRef
75.
Zurück zum Zitat Young NA (2014) The application of synchrotron radiation and in particular X-ray absorption spectroscopy to matrix isolated species. Coord Chem Rev 277–278:224–274CrossRef Young NA (2014) The application of synchrotron radiation and in particular X-ray absorption spectroscopy to matrix isolated species. Coord Chem Rev 277–278:224–274CrossRef
76.
Zurück zum Zitat Dong C-L, Vayssieres L (2018) In situ/operando X-ray spectroscopies for advanced investigation of energy materials. Chem A Eur J 24(69):18356–18373 Dong C-L, Vayssieres L (2018) In situ/operando X-ray spectroscopies for advanced investigation of energy materials. Chem A Eur J 24(69):18356–18373
77.
Zurück zum Zitat Li X, Wang H-Y, Yang H, Cai W, Liu S, Liu B (2018) In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods 2(6):1700395CrossRef Li X, Wang H-Y, Yang H, Cai W, Liu S, Liu B (2018) In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods 2(6):1700395CrossRef
78.
Zurück zum Zitat Lukashuk L, Foettinger K (2018) In situ and operando spectroscopy: a powerful approach towards understanding catalysts. Johns Matthey Technol Rev 62(3):316–331CrossRef Lukashuk L, Foettinger K (2018) In situ and operando spectroscopy: a powerful approach towards understanding catalysts. Johns Matthey Technol Rev 62(3):316–331CrossRef
79.
Zurück zum Zitat González-Flores D, Klingan K, Chernev P, Loos S, Mohammadi MR, Pasquini C, Kubella P, Zaharieva I, Smith RDL, Dau H (2018) Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution. Sustain Energy Fuels 2(9):1986–1994CrossRef González-Flores D, Klingan K, Chernev P, Loos S, Mohammadi MR, Pasquini C, Kubella P, Zaharieva I, Smith RDL, Dau H (2018) Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution. Sustain Energy Fuels 2(9):1986–1994CrossRef
80.
Zurück zum Zitat Zhu C, Fu S, Shi Q, Du D, Lin Y (2017) Single-atom electrocatalysts. Angew Chem Int Ed 56(45):13944–13960CrossRef Zhu C, Fu S, Shi Q, Du D, Lin Y (2017) Single-atom electrocatalysts. Angew Chem Int Ed 56(45):13944–13960CrossRef
81.
Zurück zum Zitat Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J et al (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668CrossRef Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J et al (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668CrossRef
82.
Zurück zum Zitat Zhang Q-H, Xiao D-D, Gu L (2016) Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides. Chin Phys B 25(6):066803CrossRef Zhang Q-H, Xiao D-D, Gu L (2016) Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides. Chin Phys B 25(6):066803CrossRef
83.
Zurück zum Zitat Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102CrossRef Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102CrossRef
84.
Zurück zum Zitat Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRef Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRef
85.
Zurück zum Zitat Zeng X, Shui J, Liu X, Liu Q, Li Y, Shang J, Zheng L, Yu R (2018) Single-atom to single-atom grafting of Pt1 onto Fe–N4 Center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv Energy Mater 8(1):1701345CrossRef Zeng X, Shui J, Liu X, Liu Q, Li Y, Shang J, Zheng L, Yu R (2018) Single-atom to single-atom grafting of Pt1 onto Fe–N4 Center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv Energy Mater 8(1):1701345CrossRef
86.
Zurück zum Zitat Chao T, Luo X, Chen W, Jiang B, Ge J, Lin Y, Wu G, Wang X, Hu Y, Zhuang Z et al (2017) Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew Chem Int Ed 56(50):16047–16051CrossRef Chao T, Luo X, Chen W, Jiang B, Ge J, Lin Y, Wu G, Wang X, Hu Y, Zhuang Z et al (2017) Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew Chem Int Ed 56(50):16047–16051CrossRef
87.
Zurück zum Zitat Liang H-W, Brüller S, Dong R, Zhang J, Feng X, Müllen K (2015) Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat Commun 6:7992CrossRef Liang H-W, Brüller S, Dong R, Zhang J, Feng X, Müllen K (2015) Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat Commun 6:7992CrossRef
88.
Zurück zum Zitat Qiu H-J, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 54(47):14031–14035CrossRef Qiu H-J, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 54(47):14031–14035CrossRef
89.
Zurück zum Zitat Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X (2016) Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7:10667CrossRef Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X (2016) Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7:10667CrossRef
90.
Zurück zum Zitat Zhang H, An P, Zhou W, Guan BY, Zhang P, Dong J, Lou XW (2018) Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv 4(1) Zhang H, An P, Zhou W, Guan BY, Zhang P, Dong J, Lou XW (2018) Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv 4(1)
91.
Zurück zum Zitat Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319(1):178–184CrossRef Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319(1):178–184CrossRef
92.
Zurück zum Zitat Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H et al (2018) General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal 1(1):63–72CrossRef Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H et al (2018) General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal 1(1):63–72CrossRef
93.
Zurück zum Zitat Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8(5):1404–1427CrossRef Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8(5):1404–1427CrossRef
94.
Zurück zum Zitat Liu D, Ding S, Wu C, Gan W, Wang C, Cao D, Rehman Z, Sang Y, Chen S, Zheng X et al (2018) Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution. J Mater Chem A 6(16):6840–6846 Liu D, Ding S, Wu C, Gan W, Wang C, Cao D, Rehman Z, Sang Y, Chen S, Zheng X et al (2018) Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution. J Mater Chem A 6(16):6840–6846
95.
Zurück zum Zitat Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao S-Z (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139(9):3336–3339CrossRef Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao S-Z (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139(9):3336–3339CrossRef
96.
Zurück zum Zitat Wang J, Ge X, Liu Z, Thia L, Yan Y, Xiao W, Wang X (2017) Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. J Am Chem Soc 139(5):1878–1884CrossRef Wang J, Ge X, Liu Z, Thia L, Yan Y, Xiao W, Wang X (2017) Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. J Am Chem Soc 139(5):1878–1884CrossRef
97.
Zurück zum Zitat Yang L, Shi L, Wang D, Lv Y, Cao D (2018) Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50:691–698CrossRef Yang L, Shi L, Wang D, Lv Y, Cao D (2018) Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50:691–698CrossRef
98.
Zurück zum Zitat Meng F, Zhong H, Bao D, Yan J, Zhang X (2016) In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J Am Chem Soc 138(32):10226–10231CrossRef Meng F, Zhong H, Bao D, Yan J, Zhang X (2016) In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J Am Chem Soc 138(32):10226–10231CrossRef
99.
Zurück zum Zitat Tao L, Lin C-Y, Dou S, Feng S, Chen D, Liu D, Huo J, Xia Z, Wang S (2017) Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 41:417–425CrossRef Tao L, Lin C-Y, Dou S, Feng S, Chen D, Liu D, Huo J, Xia Z, Wang S (2017) Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 41:417–425CrossRef
100.
Zurück zum Zitat Ding Y, Klyushin A, Huang X, Jones T, Teschner D, Girgsdies F, Rodenas T, Schlögl R, Heumann S (2018) Cobalt-bridged ionic liquid polymer on a carbon nanotube for enhanced oxygen evolution reaction activity. Angew Chem Int Ed 57(13):3514–3518CrossRef Ding Y, Klyushin A, Huang X, Jones T, Teschner D, Girgsdies F, Rodenas T, Schlögl R, Heumann S (2018) Cobalt-bridged ionic liquid polymer on a carbon nanotube for enhanced oxygen evolution reaction activity. Angew Chem Int Ed 57(13):3514–3518CrossRef
101.
Zurück zum Zitat Gonçalves JM, Matias TA, Toledo KCF, Araki K (2019) Electrocatalytic materials design for oxygen evolution reaction. In: Advances in inorganic chemistry. Academic Press Gonçalves JM, Matias TA, Toledo KCF, Araki K (2019) Electrocatalytic materials design for oxygen evolution reaction. In: Advances in inorganic chemistry. Academic Press
102.
Zurück zum Zitat Zhang Y, Wu C, Jiang H, Lin Y, Liu H, He Q, Chen S, Duan T, Song L (2018) Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv Mater 30(18):1707522CrossRef Zhang Y, Wu C, Jiang H, Lin Y, Liu H, He Q, Chen S, Duan T, Song L (2018) Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv Mater 30(18):1707522CrossRef
103.
Zurück zum Zitat Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, Lange KM, Zhang B (2018) Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J Am Chem Soc 140(11):3876–3879CrossRef Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, Lange KM, Zhang B (2018) Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J Am Chem Soc 140(11):3876–3879CrossRef
104.
Zurück zum Zitat Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C et al (2017) Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem Int Ed 56(2):610–614CrossRef Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C et al (2017) Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem Int Ed 56(2):610–614CrossRef
105.
Zurück zum Zitat Lin C, Zhao Y, Zhang H, Xie S, Li Y-F, Li X, Jiang Z, Liu Z-P (2018) Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chem Sci 9(33):6803–6812CrossRef Lin C, Zhao Y, Zhang H, Xie S, Li Y-F, Li X, Jiang Z, Liu Z-P (2018) Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chem Sci 9(33):6803–6812CrossRef
106.
Zurück zum Zitat Ohn S, Kim SY, Mun SK, Oh J, Sa YJ, Park S, Joo SH, Kwon SJ, Park S (2017) Molecularly dispersed nickel-containing species on the carbon nitride network as electrocatalysts for the oxygen evolution reaction. Carbon 124:180–187CrossRef Ohn S, Kim SY, Mun SK, Oh J, Sa YJ, Park S, Joo SH, Kwon SJ, Park S (2017) Molecularly dispersed nickel-containing species on the carbon nitride network as electrocatalysts for the oxygen evolution reaction. Carbon 124:180–187CrossRef
Metadaten
Titel
Single-Atom Electrocatalysts for Water Splitting
verfasst von
Robson R. Guimaraes
Josue M. Gonçalves
Olle Björneholm
C. Moyses Araujo
Arnaldo Naves de Brito
Koiti Araki
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-27161-9_3