Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2020

02.07.2020

Single crystal martensitic phase of structural properties-related magnetic behaviour of FeCrNi thin films: in-plane magnetic anisotropy under different substrate rotation speeds

verfasst von: Hakan Köçkar, Nadir Kaplan

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ternary FeCrNi thin films were sputtered on polyimide substrates from the source (austenitic AISI 304 stainless steel) under the substrate rotation speeds of 0, 15, 30 and 45 rpm, respectively. The films with 50 nm thickness were sputtered at 0.9 nm/s. To the elemental measurements, while the Fe content slightly varied, Ni increased and Cr content decreased as the rotation speed increased. And, all films have a single crystal of (110) peak at the angle of 2θ ≈ 44.7° which is body-centred tetragonal (bct) martensitic α′-phase. Also, the peak intensity of (110) slightly varied as a result of changes of FeCrNi martensitic alloy contents in the films. Moreover, increasing substrate rotation speed resulted in a decrease in grain size. The morphologic analysis by a scanning electron microscope and an atomic force microscopy displayed a more homogenous structure and the decrease of film roughness parameters with increasing of rotation speed, respectively. For magnetic measurements, the saturation magnetisation, Ms increased from 995 to 1172 emu/cm3 and the coercivity, Hc decreased from 88 to 52 Oe with the increase of rotation speed. In the films, the increases of the martensitic structure formations and the decrease of the grain size were observed to have probably caused the increase of the MS values and the decrease of the HC values, respectively. As observed from the XRD results, ferromagnetic behaviour of the films may be due to the martensitic phase since austenitic phase has a weak paramagnetic behaviour as a source material at room temperature. From the parallel and perpendicular hysteresis loops, the films can also be obtained to have uniaxial in-plane anisotropy with increasing rotation speed. It is seen that the film properties can be easily varied by changing rotation speed for potentially new device applications such as spintronics, magnetic hetero-structures, magnetic separators, etc. on flexible substrates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.R. Davis, ASM Specialty Handbook Nickel, Cobalt, and Their Alloys (ASM International, Metals Park, 2000), pp. 3–13 J.R. Davis, ASM Specialty Handbook Nickel, Cobalt, and Their Alloys (ASM International, Metals Park, 2000), pp. 3–13
2.
Zurück zum Zitat C.A.C. Sequeira, High Temperature Corrosion: Fundamentals and Engineering (Wiley, Hoboken, 2019), pp. 31–44 C.A.C. Sequeira, High Temperature Corrosion: Fundamentals and Engineering (Wiley, Hoboken, 2019), pp. 31–44
3.
Zurück zum Zitat B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2008), pp. 175–237 B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Hoboken, 2008), pp. 175–237
4.
Zurück zum Zitat D. Jiles, Introduction to Magnetism and Magnetic Materials, 1st edn. (CRC Press, Arnes, 2015), pp. 69–80 D. Jiles, Introduction to Magnetism and Magnetic Materials, 1st edn. (CRC Press, Arnes, 2015), pp. 69–80
5.
Zurück zum Zitat M. Ohring, Materials Science of Thin Films, 2nd edn. (Elsevier, San Diego, 2002), pp. 103–105 M. Ohring, Materials Science of Thin Films, 2nd edn. (Elsevier, San Diego, 2002), pp. 103–105
6.
Zurück zum Zitat B. Heinrich, J.A.C. Bland, Ultrathin Magnetic Structures IV: Applications of Nanomagnetism (Springer, Berlin, 2006), pp. 5–55 B. Heinrich, J.A.C. Bland, Ultrathin Magnetic Structures IV: Applications of Nanomagnetism (Springer, Berlin, 2006), pp. 5–55
8.
Zurück zum Zitat R. Pereira, P.C. Camargo, A.J.A. de Oliveira, E.C. Pereira, Surf. Coat. Technol. 311(1), 274–281 (2017) R. Pereira, P.C. Camargo, A.J.A. de Oliveira, E.C. Pereira, Surf. Coat. Technol. 311(1), 274–281 (2017)
9.
Zurück zum Zitat Y. Xiao, Y. Liu, Z. Tang, L. Wu, Y. Zeng, Y. Xu, Y. He, J. R. Soc. Chem. 2016(6), 51096–51105 (2016) Y. Xiao, Y. Liu, Z. Tang, L. Wu, Y. Zeng, Y. Xu, Y. He, J. R. Soc. Chem. 2016(6), 51096–51105 (2016)
10.
Zurück zum Zitat Y. Cao, C. Zhou, J. Magn. Magn. Mater. 333(1), 1–7 (2013) Y. Cao, C. Zhou, J. Magn. Magn. Mater. 333(1), 1–7 (2013)
11.
Zurück zum Zitat R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108(3), 845–904 (2006) R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108(3), 845–904 (2006)
12.
Zurück zum Zitat H. Kockar, J. Supercond. Inc. Novel Magn. 17(4), 531–536 (2004) H. Kockar, J. Supercond. Inc. Novel Magn. 17(4), 531–536 (2004)
13.
Zurück zum Zitat H. Köçkar, N. Kaplan, A. Karpuz, H. Kuru, B. Kaya, J. Supercond. Novel Magn. 38(8), 2457–2465 (2019) H. Köçkar, N. Kaplan, A. Karpuz, H. Kuru, B. Kaya, J. Supercond. Novel Magn. 38(8), 2457–2465 (2019)
14.
Zurück zum Zitat S. Logothetidis, Nanoscience and Technology: Nanostructured Materials and Their Applications (Springer, Berlin, 2012), pp. 105–108 S. Logothetidis, Nanoscience and Technology: Nanostructured Materials and Their Applications (Springer, Berlin, 2012), pp. 105–108
15.
Zurück zum Zitat D. Shi, B. Aktas, L. Pust, F. Mikailov, Nanostructured Magnetic Materials and Their Applications (Springer, Berlin, 2002), pp. 129–144 D. Shi, B. Aktas, L. Pust, F. Mikailov, Nanostructured Magnetic Materials and Their Applications (Springer, Berlin, 2002), pp. 129–144
16.
Zurück zum Zitat J.P. Eymery, R. Krishnan, J. Magn. Magn. Mater. 104(1), 1785–1786 (1992) J.P. Eymery, R. Krishnan, J. Magn. Magn. Mater. 104(1), 1785–1786 (1992)
17.
Zurück zum Zitat J. Eymery, G. Laplanche, J. Magn. Magn. Mater. 93(1), 179–182 (1991) J. Eymery, G. Laplanche, J. Magn. Magn. Mater. 93(1), 179–182 (1991)
18.
Zurück zum Zitat N. Kaplan, H. Köçkar, A. Karpuz, H. Kuru, M. Uckun, J. Magn. Magn. Mater. 476(1), 597–603 (2019) N. Kaplan, H. Köçkar, A. Karpuz, H. Kuru, M. Uckun, J. Magn. Magn. Mater. 476(1), 597–603 (2019)
19.
Zurück zum Zitat F. Delogu, Acta Mater. 59(2011), 2069–2074 (2011) F. Delogu, Acta Mater. 59(2011), 2069–2074 (2011)
20.
Zurück zum Zitat I. Meszaros, J. Prohaszka, J. Mater. Process. Technol. 161(1), 162–168 (2005) I. Meszaros, J. Prohaszka, J. Mater. Process. Technol. 161(1), 162–168 (2005)
21.
Zurück zum Zitat B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall, Upper Saddle River, 2001) B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall, Upper Saddle River, 2001)
22.
Zurück zum Zitat H. Kockar, T. Meydan, Physica B 321(1–4), 124–128 (2002) H. Kockar, T. Meydan, Physica B 321(1–4), 124–128 (2002)
Metadaten
Titel
Single crystal martensitic phase of structural properties-related magnetic behaviour of FeCrNi thin films: in-plane magnetic anisotropy under different substrate rotation speeds
verfasst von
Hakan Köçkar
Nadir Kaplan
Publikationsdatum
02.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03835-4

Weitere Artikel der Ausgabe 15/2020

Journal of Materials Science: Materials in Electronics 15/2020 Zur Ausgabe

Neuer Inhalt